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Abstract. The Cremona group Crn(k) is the group of birational transformations of the
projective n-space Pn over a field k. The study of these groups dates back to the 19th
century with some of the central questions still being open. In the recent years new
techniques, based on the Minimal Model Program, have been developed to answer some
of these questions when k = C.

In this talk, utilizing these techniques, I will explain how to construct families of
birational involutions on P3 which do not fit in an elementary relation of Sarkisov links.
Using these involutions, we can construct new homomorphisms from Cr3(C), effectively
reproving non-simplicity, and show that it admits a free product structure. Furthermore,
using the free product structure, we will show that the group Aut(Cr3(C)) is not generated
by inner and field automorphisms. Similar constructions also apply to the study of the
group of birational transformations of a cubic threefold, where we obtain counterpart
results.

1. The Cremona group

The Cremona group Crn(k) = Birk(Pn) is the group of birational transformations of the
projective space Pn over a field k.

1.1. Simplicity. One of the central questions regarding the structure of this group is the
following:

Question. Is the Cremona group Crn(k) a simple group (i.e. does it admit no non-trivial
homomorpisms to other groups)?

The question is settled in many cases and in all those cases the answer is negative:

● n = 2 for any field k by [CL13] and [Lon16];
● n = 2 over a perfect field k with some extra restrictions, [LZ20] (there exists a Galois

orbit of size 8) and [Sch21] ([k̄ ∶ k] > 2) constructed non-trivial homomorphisms
from Cr2(k);

● similarly, for n = 3 over C, by [BLZ21].

The recipe of [BLZ21] for the construction of the homomorphism goes as follows: First
we get a presentation for the groupoid BirMori(Pn), that is the groupoid whose objects
are Mori fiber spaces birational to Pn and morphisms between them are birational maps
between them. Then define a morphisms (of groupoids) from BirMori(Pn) to a group G
and restrict it to Crn.

We will construct families birational involutions of P3 which:

1. lie in a natural set of generators;
2. do not appear in any non-trivial relation in BirMori(P3) (will be made more precise

later).

Using these involutions we obtain the following results:
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Theorem 1. There exists a surjective group homomorphism

ψ∶Cr3(C) → ∗
I
Z/2Z,

where

● the indexing set I is uncountable (and actually parametrizes the aforementioned
links);

● explicit elements of order as low as 19, not contained in the kernel.

Furthermore, we have an isomorphism

Cr3(C) ≅ G ∗ (∗
J
Z/2Z) ,

where J is uncountable.

This effectively reproves the non-simpicity of Cr3. The distinct advantage of this con-
struction over previous ones, is that it is quite explicit.

The free product structure also gives a surjective group homorphism to a free product
of Z/2Z by projecting to the second factor. However, the kernel of the projection is much
larger than that of ψ.

1.2. Generation by inner and field automorphisms.

Question. Let φ∶Crn(k) → Crn(k) be a group automorphism. Is φ the composition of a
field automorphism of k with an inner automorphism?

Recall that if σ is a field automorphism of k then it acts on Crn(k) as follows: if
f ∈ Crn(k) then it is of the form f = (f0, . . . , fn), where the fi are homogeneous polynomials
of the same degree. Then σ acts on f by acting on the coefficients of the fi’s.

For n = 2 and k = C, we have an affirmative answer by [Dés06]. Similarly, if n ≥ 2 and k
is a field of characteristic 0, under the additional assumption that φ is a homeomorphism
(with respect to the Zariski topology) then the answer is again yes.

Using the free product structure on Cr3(C) we obtain the following:

Theorem 2. There exists uncountably many automorphism of Cr3(C) of arbitrary order
which are not generated by inner and field automorphisms.

Consequently, these automorphisms are not continuous (with respect to the Zariski topol-
ogy).

This serves as a negative answer to the aforementioned question. Moreover, it provides
the first examples on non-continuous group automorphisms of the Cremona group.

2. Presentation of the groupoid BirMori(X)
2.1. Generators of BirMori(X).
Definition 2.1. A Sakrisov link between two Mori fiber spaces X/B and X ′/B′ over a base
R is a diagram of the form

Y
χ //

��

Y ′

��
X

��

X ′

��
B

%%

B′

yy
R
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which satisfies the following properties:

(1) X,X ′, Y, Y ′ are birational and χ is an isomorphism or pseudo-isomorphism (i.e.
both χ and it’s inverse are isomorphisms after removing subsets of codimension
greater that 1);

(2) vertical arrows are isomorphisms or extremal contractions (i.e. morphism with con-
nected fibers);

(3) varieties of maximal dimension are mildly singular (Q-factorial and terminal);
(4) the relative Picard rank ρ(Z/R) of any variety Z in the diagram is at

most 2.

Properties (1) and (2) imply that Y →X and Y ′ →X ′ are either divisorial contractions
or isomorphisms, since all varieties on top have the same dimension. Property (3) implies
that exactly one of the two vertical arrows in each side is an isomorphism. There are
4 configurations depending on the position of the isomorphisms, namely Bottom-Top/B-
B/T-B/T-T, corresponding to the Sarkisov diagrams of Type I/II/III/IV.

Type I

Y //

��

X ′

ψ
��

X

φ
��

B′

~~
R

Type II

Y //

��

Y ′

��
X

φ
��

X ′

ψ
��

B
∼ // B′

Type III

X //

φ
��

Y ′

��
B

  

X ′

ψ
��
R

Type IV

X //

φ
��

X ′

ψ
��

B

��

B′

��
R .

Property (4) is the defining property of Sarkisov diagram: it implies that the whole
diagram can be recovered just from the data Y /B (or by Y ′/B) via the 2-ray game. Indeed,
ρ(Y /B) = 2 and thus the cone of curves only has 2 extremal rays. One corresponds to the
contraction Y → X (or Y → B if Y → X is an isomorphism). The 2nd ray corresponds to
another contraction which may be divisorial or of flipping type. In the former case, we are
done, while in the latter we repeat the same process with the flipped variety.

Theorem 2.1 ([Cor95] in dimension 3, [HM13] in any dimension). Any birational map
between Mori fiber spaces can be decomposed as a sequence of Sarkisov links.

This implies that Sarkisov links generate the groupoid BirMori(X).
2.2. Relations in BirMori(X). To obtain a presentation of BirMori(X/B), we would
need to know the relations among the Sarkisov links. This is achieved by the theory of
rank r fibrations, developed by Blanc-Lamy-Zimmermann based on ideas of Kaloghiros.

Definition 2.2. Let r ≥ 1 be an integer. A morphism η∶X Ð→ B is a rank r fibration if
the following conditions hold:

(1) dimX > dimB and ρ(X/B) = r;
(2) X/B is a Mori Dream Space1;
(3) X is Q-factorial and terminal and for any divisor D on X, the output of any D-

MMP over B is still Q-factorial and terminal.
(4) There exists an effective Q-divisor ∆B such that the pair (B,∆B) is klt.

1For our purposes it is enough to keep in mind that for any divisor D on X, we can run any D-MMP
over B, i.e. all relevant contractions/flips exist, any sequence of flips terminates and if at some point D
becomes nef then it also becomes semi-ample.
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(5) The anticanonical divisor of X is η-big (can be written as a sum of an η-ample
divisor with an effective divisor).

We say that a rank r fibration X/B dominates a rank r′ fibration X ′/B′ if we have a
commutative diagram

X //
((

B

X ′ // B′
66

where X −→ X ′ is a birational contraction and B′ Ð→ B is a morphism with connected
fibres.

Remark 2.2. A rank 1 fibration corresponds to a terminal Mori fibre space while a rank 2
fibration corresponds to a Sarkisov links between two Mori fibre spaces.

Proposition 2.3. Let X Ð→ B be a rank 3 fibration. Then there are only finitely many
rank 2 fibrations, corresponding to Sarkisov links χi, dominated by X/B, and they fit in a
relation

χt ○ ⋅ ⋅ ⋅ ○ χ1 = id.

A relation arising from a rank 3 fibration is called an elementary relation.

Proof. Since X/B is an MDS, there exist finitely many pseudo-isomorphisms gi∶X // Xi

such that the movable cone Mov(X/B) is the union of the g∗i (Nef(Xi)). Moreover, each
Xi/B is an MDS, thus NE(Xi/B) are polyhedral cones and every extremal ray can be
contracted to some Yi. By doing all these contractions we get a diagram

Y1
χ1

ssY2

χ2

}}

Yt

χt
]]

Y3

χ3

��

X

OO

��

oo //

`` >>

~~

Yt−1

χt−1

TT

Y4
χ4 ��

⋰

χt−2

==

Y5

χ5

22

where X −→ Yi are birational contractions and Yi/B are rank 2 fibrations, which correspond
to Sarkisov links. �

Theorem 2.4 ([BLZ21]). Let X/B be a terminal Mori fibre space. Any relation between
Sarkisov links in BirMori(X) is generated elementary relations.

Combining Theorems 2.1 and 2.4 we get that BirMori(X/B) is of the form

BirMori(X/B) = ⟨ Sarkisov links between
Mfs’s birational to X

∣ relations dominated
by rank 3 fibrations

⟩

and we can use this presentation to construct morphisms from BirMori(X/B).
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3. The involutions

Proposition 3.1. Let C be a general element of Hg,d, with (g, d) ∈ {(2,8), (6,9), (10,10), (11,14)}.

Denote by X the blowup of P3 along C. They we have a diagram

X

��

// X

��
P3 χ //

((
P3

vv
Spec(C)

where χ is an involution.

Proof. The generality condition on C ensures that X is smooth and weak-Fano. Moreover
we have the formula

(−KX)3 = (−KP3)3 + 2KP3 ⋅C − 2 + 2g = 2.

By the Hirzebruch-Riemann-Roch and the Kawamata-Viehweg vanishing we get

h0(X,−nKX) = n(n + 1)(2n + 1)
12

(−K3
X) + 2n + 1 = n(n + 1)(2n + 1)

6
+ 2n + 1.

Computing the dimensions of h0(X,−nKX) we get that

R(X,−KX) ∶= ⊕
n≥0

H0(X,−nKX) = C[x0, . . . , x3, t]/(t2 − f6(x0, . . . , x3))

where the grading on the right is given by (1,1,1,1,3). Taking the Proj we conclude.
If we denote by π∶X → P3 the blowup along C and by r∶X → Z the anti-canonical

morphism then the induced involution is the composition

P3 π−1 // X
r // Z

η // Z
r−1 // X

π // P3.

�

The aforementioned involutions are actually Sarkisov links dominated by rank the 2
fibrations X → Spec(C). They are thus completely determined by X and consequently by
C. Thus in what follows, χC will denote the involution induced by the blowup of C.

Proposition 3.2. There is no rank 3 fibration dominating X → Spec(C). Consequently,
there is no elementary relation involving χC .

Proof. Let W → X → Spec(C) be such a rank 3 fibration. Then W → X is a divisorial
contraction with W terminal and X smooth. Thus W → X is either a weighted blowup
of a point or the (regular) blowup of a curve. We will distinguish cases and in all, we will
show that −KW is not big, contradicting Property (5) of Definition 2.2.
Case 1: E ⊂W Ð→ p ∈X is a (1, a, b)-blowup.

We will only give a rough idea in the baby case a = b = 1, i.e. a regular blowup. Assume
for contradiction that −KW is big and let SW ∈ ∣−nKW ∣ be a general element, n ≫ 0 and
HX ∈ ∣−KX ∣ be an element of HX containing p. Denote by SX ∈ ∣−nKX ∣ the image of SW
in X. Let CX be the complete intersection of SX and HX . We have

−KX ⋅CX = −KX ⋅ SX ⋅HX = n(−KX)3 = 2n.

Moreover, if CW denotes the strict transform of CX , then

E ⋅CW = vE(SW ) ⋅ vE(HX) = 2n
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and a quick calculation yields

−KW ⋅CW = (−KX − 2E) ⋅CW = 2n − 4n = −2n < 0.

By varying SW andHX we may find −KX -negative curves which coverW , which contradicts
the bigness of −KW .
Case 2: E ⊂W Ð→ z ∈X is the blowup of a curve contracted by X → Z.

In this case, we will show that (−KW )3 = 0 but −KW is nef. For the former we only need
to notice that all contracted curves are rational and so using the formula for the cube of the
anti-canonical we get (−KW )3 = 0. As for the latter, any curve negative against −KW is in
the (stable) base locus. However, sections of −KW are pullbacks of sections of hyperplane
sections of Z passing through the image of Z. The only base locus of this system is the
image of z. Thus −KW -negative curves lie in the exceptional divisor E of W →X. The we
may calculate explicitly, that E ≅ F0 or F2 and using adjunction we may check that −KW

is nef when restricted there.
Case 3: E ⊂W Ð→ z ∈X is the blowup of a curve NOT contracted by X → Z.

Senction of −nKW are pullback of hypersurface sections of degree n vanishing with
multiplicity n at the image of z. Let I = (f1, . . . , fk) be the ideal of the image of C and
h = 0 such a hyperplane section. Then h ∈ In and since deg(h) = n, h is a linear combination
of degree n monomials in the linear elements of I. For the system to be big, we need to
have at least 4 such elements, which is a contradiction. �

4. Corollaries

4.1. Group homomorphism and semidirect product structure. As promised, we
will now define a groupoid homomorphism from BirMori(P3) to a free product of Z/2Z’s.

What we would like to do is define I to be the union of the Hilbert schemes Hg,d for
(g, d) as in Proposition 3.1 and then define the homomorphism by sending χCi to the 1i
(the non-zero element of the i-th factor of the free product) and every other Sarkisov link
to 0. The problem with this approach is that for any automorphism a ∈ Aut(P3) we have
the relation

a−1 ○ χa(C) ○ a = χC .
However, this can be easily remedied by taking I to be the elements in the Hilbert schemes
up to projective equivalence.

We define a groupoid homomorphism Ψ from BirMori(P3) to ∗I Z/2Z as follows: On
the level of objects, Ψ maps everything to the unique object of ∗I Z/2Z (when considered
as a groupoid). On the level of Sarkisov links and automorphisms, for each i ∈ I, if Ci
belongs to the projective equivalence class of i, χCi is mapped to the non-zero element of
the factor i. All other links and isomorphisms are mapped to the zero element. Using the
fact that there are no non-trivial elementary relations among the χCi , we see that this map
is well defined. Finally we define ψ∶Cr3 →∗I Z/2Z to be the restriction of Ψ to Cr3.

Theorem 4.1. The homomorphism ψ∶Cr3 → ∗I Z/2Z defined above is clearly surjective
and admits a section. Thus we have

Cr3 = N ⋊∗
I
Z/2Z,

where N is the kernel of ψ.

Proof. For a section, we just choose a curve Ci in each projective equivalence class i ∈ I
and map 1i to χCi . �



NOTES ON THE TALK IN BASEL-DIJON-EPFL JOINT SEMINAR 7

4.2. Free product structure. With a little bit more care and using the same involutions,
one may obtain a free product structure on Cr3. We would like to say that

Cr3 ≅ G ∗ (∗
I
Z/2Z) ,

where G is the subgroup of Cr3 consisting of elements that admit a decomposition into
Sarkisov links that contain no χCi , i ∈ I.

However we run into a similar problem again: Let C be a curve corresponding to some
index i ∈ I and a ∈ Aut(P3) such that a(C) = C. Then a ○ χC ○ a−1 = χC which should be
different words in the free product.

To circumvent this, we define a refinement J of I, as the subset of projective equivalent
classes that admit no projective automorphisms. With some work, we can show that J is
still uncountable. We have

Theorem 4.2. We have an isomoprhism

Cr3 = G ∗ (∗
J
⟨χCj ⟩) ≅ G ∗ (∗

J
Z/2Z) .

Proof. By working with curves up to projective equivalence and only with those that admit
no projective automorphisms, the only relations involving the χCj are (χCj)2 = id.

Given an f ∈ Cr3, we decompose it into Sarkisov links. If there is a link of the form χC
such that C = a(Cj) for some a ∈ Aut(P3) and j ∈ J the we replace χC by a ○ χCj ○ a−1.
We then group up anything in between two χCj and χCj′

to obtain a decomposition into
alternating elements of G and elements of the form χCj . This shows that the factors
generate Cr3.

Given a relation R = id in Cr3, we consider it as a relation in BirMori(P3). Then R is
a product of conjugates of elements (χCj)2, j ∈ j and RG, where RG is a relation in G.

By the rules of the free product, we may cancel χ2
Cj

and thus we are left with product of

conjugates of RG, i.e. a relation in G. This shows that there are no relations in between
the factors. �

4.3. Generation by inner and field automorphisms. Fix a free product structure on
Cr3 as above. Choose two curves C = Cj and C ′ = Cj′ , with j ∈ J , such that g(C) ≠ g(C ′).
Let φ∶Cr3 → Cr3 the automorphism exchanging the two factors j and j′. We have

Theorem 4.3. The automorphism φ is not generated by inner and field automorphisms.

Proof. Let g ∈ Cr3 and σ be a field automorphism. Suppose that

φ(f) = g−1 ○ σ(f) ○ g.

For f = χCj we get

χCj′
= g−1 ○ σ(χCj) ○ g.

Since the only relation involving χCj′
is (χCj′

)2 = id the only possiblities would be g = id

and σ(χCj) = χCj′
. By comparing base loci we would get that σ(Cj) = Cj′ . However a field

automorphism preserves the Hilbert polynomial which is a contradiction by our choice of
C, C ′. �
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