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1. Reminders from surface theory

1.1. Intersection Theory.

Theorem 1.1. Let S be a smooth projective surface. There exists a unique symmetric
bilinear paring

Div(S)×Div(S) → Z
(D,C) 7→ D · C

with the following properties:
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(1) if D and C are effective divisors meeting transversally, then

D · C = #(D ∩ C);

(even if D and C don’t meet transversally, and as long as they have no common components,

we can still define D ·C by summing up their points of intersection but keeping in mind the

”degree of tangency” at each point.)

(2) if C1 ∼ C2 then D · C1 = D · C2, for every D ∈ Div(X).

Sketch of proof. The idea is to start by defining the product only on effective divisors in-
tersecting transversally as in (1). If two effective divisors D,C don’t intersect transversally
show that we can find C ∼

∑
aiCi so that D and Ci intersect transversally; then define

D · C :=
∑

aiD · Ci.

Note that the ai don’t have to be positive. Finally extend by linearity to non-effective
divisors too.

For details see [Har77, Chapter V, Theorem 1.1]. �

Definition 1.2. Two divisors D1, D2 are called numerically equivalent if

D1 · C = D2 · C, for all curves C ⊂ S.
We denote that by D1 ≡ D2, and write N1(S) = {Div(S)/ ≡}⊗R for the space of divisors
up to numerical equivalence.

Two curves C1, C2 are called numerically equivalent if

D · C1 = D · C2, for all D ∈ Div(S).

We denote that by C1 ≡ C2, and write N1(S) = {Z1(S)/ ≡} ⊗ R for the space of 1-cycles
up to numerical equivalence.

We define the cone of curves NE(S) to be the cone in N1(S) spanned by curves. Its
closure NE(S) is called the Mori cone of S.

The vector spaces N1(S) and N1(S) are dual to one another (via the intersection pairing),
and so dimN1(S) = dimN1(S). Moreover, their dimension is finite and called the Picard
rank ρ(S) of S.

Theorem 1.3 (Numerical criteria for ampleness). For a divisor D on a smooth surface S
the following are equivalent:

(1) D is ample;
(2) D2 > 0 and D · C > 0 for any curve C ⊂ S;
(3) D · z > 0 for any class z ∈ NE(S).

The equivalences (1) ⇔ (2) and (1) ⇔ (3) are known as Nakai-Moischezon and
Kleiman criteria for ampleness respectively.

This shows that ampleness is a numerical property. Nefness is a slight weakening of
ampleness:

Definition 1.4. A divisor is called nef if D · C ≥ 0 for every curve in S.

1.2. How blowups change intersections.

Definition 1.5. Let f : T → S be a morphism of surfaces.
If D ∈ Div(S) be a divisor cut out locally by the equations {(Ui, hi)} we define the

pullback of D as

f∗D := {f−1(Ui), hi ◦ f}.
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If C is a curve in T we define the pushforward of C as

f∗C :=

{
d · f(C), if f(C) is a curve;
0, if f(C) is a point,

where d is the is the degree of f |C .
These notions satisfy the pull-push formula:

f∗D · C = D · f∗C.

Definition 1.6. We define the blowup of A2 at the origin to be

Bl0A2 := {(x0, x1), (u0 : u1) ∈ A2 × P1 |x0u1 − x1u0 = 0}

together with the projection to the first factor Bl0A2 → A2.
Let S be a smooth surface and p ∈ S a point. We define the blowup of S along p by

choosing an (analytic) neighbourhood p ∈ U ⊂ S so that (p, U) ∼= (0,A2), blowing up U
along p and glueing accordingly.

Proposition 1.7. Let S be a smooth projective surface and f : T → S the blowup along a
point p with exceptional divisor E. Then

(1) f∗D · f∗C = D · C for any D,C ∈ Div(S);

(2) f∗C = C̃ + mE, where m is the multiplicity of C at p, in particular Pic(T ) =
f∗ Pic(S)⊕ ZE;

(3) KT = f∗KS + E;
(4) E ∼= P1 and E2 = −1.

Sketch of proof. (1) is by Serre’s moving lemma: move D and C away from p; the blowup
changes nothing away from p. (2) and (3) are local calculations: pullback the equation of
a curve/differential form. As for (4) work again locally: let L1, L2 be two lines through
0 ∈ A2; we have

1 = L1 · L2 = f∗(L1) · f∗(L2) = L̃1 · L̃2 + L̃1 · E + L̃2 · E + E2 = 2 + E2.

�

Remark 1.8.

(1) If D and C are effective divisors, then D · C < 0 implies that C ⊂ D.
(2) In particular, if C2 < 0 for an irreducible curve, then h0(S,OS(C)) = 1; that is

curves of negative self intersection are unique in their linear system.
(3) Proposition 1.7(2) gives us a way to turn incomplete linear systems into complete

ones.

1.3. Resolution of (bi)rational maps.

https://s-zikas.github.io/site/pics/-1curve.jpg
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Reminder - Maps to Pn: for a divisor D ∈ Div(S) we define its global
sections as:

H0(S,D) := {f ∈ k(S) |D′ := div(f) +D ≥ 0}
= {D′ ∈ Div(X) |D′ ≥ 0 and D ∼ D′}.

Essentially sections of a divisor are rational functions that are allowed
to have poles as most on D. Note that H0(S,D) is a k-vector space; a
subspace V ≤ H0(S,D) is called a linear system; if V = H0(S,D) we
call it the complete linear system of D. From now on, whenever we
talk about sections of a divisor, we will freely interchange between the
rational functions and the corresponding effective divisor. Given a linear
system V we define its fixed part F to be the biggest divisor that is
contained in every element of V .

There is a bijection{
Rational maps to Pn

}
↔

{
Linear systems with no fixed part}

f : S 99K Pn 7→ 〈f∗{xi = 0}, 0 ≤ i ≤ n〉
f = (f0 : . . . : fn) ←[ 〈f0, . . . , fn〉 = V.

The map f will fail to be a morphism precisely when f0, . . . , fn share a
common zero; equivalently where the divisors Di intersect. We say that
a divisor is base point free (bpf) if its complete linear system defines
a morphism. We say that it is semiample if a multiple of it is bpf.
By Remark 1.8(1), on the right hand side of the bijection we only care
for divisors that are nef. However not all nef divisors correspond to
morphisms (see Exercise 4)

Example 1.9. Consider D = {x0 = 0} as a divisor on P2. Then

H0(S,D) =

{
l

x0
∈ k(S)

∣∣∣∣ l ∈ k[x0, x1, x2]1

}
=

〈
x0
x0
,
x1
x0
,
x2
x0

〉
.

Consider the rational map

P2 f // P1

(x0 : x1 : x2) 7→
(
x0
x0

: x0+x1x0

)
= (x0 : x0 + x1)

not defined at the point p = (0 : 0 : 1); this is precisely the point of intersection of the two
lines l0 = {x0 = 0} and l1 = {x0 + x1 = 0}. We will fix that by blowing up p and thus
disconnecting the lines.

The blowup π : S → P2 of P2 at p is given by

S =
{

(x0 : x1 : x2), (u0 : u1) ∈ P2 × P1 |x0u1 − x1u0 = 0
}
.

We will work locally at the open chart U2,0 = {x2 = u0 = 1}. We have the isomorphism

A2 → U2,0

(X0, X1) 7→ (X0 : X0X1 : 1), (1 : X1)
(x0, u1) ←[ (x0 : x1 : 1), (1 : u1).

and the restriction of π on this chart becomes

U2,0
∼= A2 → π(U2,0) ∼= A2 → P1

(X0, X1) 7→ (X0, X0X1)
(Y0, Y1) 7→ (Y0 : Y1).
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For the diagram

U2,0 ⊂ S

yy
s

%%
A2 f // P1

to be commutative, s is given by

(1)
U2,0 99K P1

(X0, X1) 7→ (X0 : X0 +X0X1).

However, since the target is projective space, we can clear the common factor X0 to obtain
the morphism (X0, X1) 7→ (1 : 1 +X1).

Doing the same analysis on all the charts Ui,j, 0 ≤ i ≤ 2 0 ≤ j ≤ 1, we see that f lifts
to a morphism.

Remark 1.10. The initial lift of the map f given in (1) is given by sections of the pullback
of the lines l0, l1. The common factor X0 is, locally, the equation of the exceptional divisor
and so the process of clearing denominators is the same as considering the linear system
given by the strict transform of the lines instead.

Proposition 1.11. Let f : S 99K Pn be a rational map, that is not defined in finitely many
points. Then we have a commutative diagram

W
r

~~
s
!!

S
f // Pn,

so that W → S is a composition of blowups of points.

Proof. Suppose that the rational map f is given by sections of the linear system V ≤
H0(S,OS(D)). Since D is nef, we have D2 ≥ 0. Moreover, since the base points of the
map are exactly where any two sections of V intersect, we have the bound

# of base points ≤ D2.

Let p be a base point and denote by S1 → S the blowup of S at p. Then we get a
commutative diagram

S1
r1

��
s1

!!
S

f // Pn,
where s1 is given by the linear system

r∗1V := {r∗1Di ∈ H0(S1,OS1(f∗D)) |Di ∈ V }.

Since p was a base point of f , all sections of V pass thought p, and so

r∗1Di = D̃i +mE1.

Thus, after clearing common components, we may assume instead that s1 is given by
sections of OS1(D1), where D1 = f∗D −mE. Note that D2

1 = D2 −m2 < D2.
If s1 still has base points, we repeat. This procedure has to terminate since at every step

we must have D2
i > 0. �

Remark 1.12. In fact, if f is birational and s(W ) is also a smooth surface, we can also
assume that s is a composition of blowups (see Exercise 2)
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Proposition 1.13 (Stein factorization). Let f : S →W ′ be a morphism. Then there exists
a decomposition S →W →W ′ so that S →W has connected fibers and W →W is finite.

Moreover, if D is a base point free divisor and fn : S → W ′n is the morphism defined by
nD with Stein factorization S → Wn → W ′n, then Wn → W ′n is the identity for n � 0.
That is to say that, for n� 0, fn has connected fibers.

Proof. See [Mat02, Proposition 1-2-16]. �

In everything that follows we will only be interested in properties of morphism that are
invariant up to multiplying the corresponding divisor: e.g. the sign of nD ·C is independent
of n.

From now on, unless otherwise stated, we will always assume that all
morphisms are surjective and have connected fibers. Such a morphism

is called a contraction.

Exercise 1.14. Let S be a cubic surface

S =
{

(x0 : x1 : x2 : x3) ∈ P3
∣∣x0f1 − x1f0 = 0

}
with f0, f1 ∈ k[x0, x1, x2, x3]2 and so that

f0 = x22 + l0(x0, x1, x2)x3 and f1 = x23 + l1(x0, x1)x2,

for some linear polynomials li. Consider the rational map

f : S 99K P2

(x0 : x1 : x2 : x3) 7→ (x0 : x1 : x2)

Observe that

(1) the line L := {x0, x1} ⊂ S is contracted by f ;
(2) f is generically 2-to-1.

Consider the morphism

S → W =
{

(x0 : . . . : x3, t) ∈ P4
∣∣ tx0 − f0 = tx1 − f1 = 0

}
(x0 : x1 : x2 : x3) 7→


(
x0 : x1 : x2 : x3 : f0x0

)
, if x0 or f0 are non-zero(

x0 : x1 : x2 : x3 : f1x1

)
, if x1 or f1 are non-zero.

Observe that

(1) S →W contracts L to the point (0 : 0 : 0 : 0 : 1) ∈W ;
(2) S →W is an isomorphism away from L.

Finally show that f factors though S → W , with S → W having connected fibers and
W → P2 being a finite (rational) map.1

1.4. Riemann-Roch and cohomology.

Theorem 1.15 (Grothendieck vanishing and Serre duality). Let X be a smooth projective
variety of dimension n and D a divisor. Then H i(X,OX(D)) = 0 for all i > n and

H i(X,OX(D)) ∼= Hn−i(X,OX(KX −D)),

for all 0 ≤ i ≤ n.

1 f and S → W are not defined only at the points (0, 0, 0, 1) and (0, 0, 0, 1, 0) respectively; blowing up
these points resolves f/S → W ; their lift gives an example of the Stein factorization of an actual morphism.
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Theorem 1.16 (Riemann-Roch). Let S be a smooth surface and D a divisor. Then

χ (OS(D)) =
(D −KS) ·D

2
+ χ(OS).

By Theorem 1.15 in dimension 2 the only relevant cohomology groups appearing in
the Euler characteristic of a divisor are H0 and H1. While H0(S,OS(D)) correspond to
”functions”, H1(S,OS(D)) should be though of as some sort of speciality or dependence
condition.

Example 1.17. Let p1, p2, p3 be three points in P2, and let f : S → P2 be the blowup along
these three points, with exceptional divisor E1, E2 and E3. Then, for D = f∗L−E1−E2−E3,
elements in H0(S,O(D)) correspond to lines through the three points pi. Moreover, by
Riemann-Roch we can compute that χ(OS(D)) = h0(S,O(D))− h1(S,O(D)) = 0.

If the pi are not collinear, then clearly h0(S,O(D)) = 0 and so h1(S,O(D)) = 0. If on the
other hand there exists a line through the pi then h0(S,O(D)) = 1 and so h1(S,O(D)) = 1!

Theorem 1.18 (Serre and Kodaira vanishing theorems). Let X be a smooth projective
variety and A an ample divisor on X. Then for any i > 0 we have:

• hi(X,OX(rA+D)) = 0 for any divisor D and r � 0;
• hi(X,OX(KX +A)) = 0.

Note that Serre’s vanishing theorem is asymptotic in nature, while Kodaira’s vanishing
theorem is effective, but for a more restrictive divisor.

2. Castelnuovo’s contraction theorem

Definition 2.1. A (−1)-curve E ⊂ S is an irreducible and reduced curve with

E ∼= P1 and E2 = −1.

An example of (−1)-curve is the exceptional curve of a blowup. The goal of this section
is to prove that these are all examples of (−1)-curves.

Reminder 1 - the structure sequence: for a subvariety Y of X we have

(†) 0→ IY → OX → OY → 0.

This should be thought of as a sheafified version of the exact sequence

0→ I → k[x0, . . . , xn]→ k[x0, . . . , xn]/I → 0,

for an ideal I of k[x0, . . . , xn]. If X is smooth and dimY = dimX − 1
then IY = OX(−Y ).

Reminder 2 - long exact sequence in cohomology : for a short exact se-
quence of sheaves, for simplicity say like (†), we have a long exact se-
quence in cohomology

0→ h0(X, IY )→ h0(X,OX)→ h0(Y,OY )→
→ h1(X, IY )→ h1(X,OX)→ h1(Y,OY )→ · · ·

Theorem 2.2 (Castelnuovo’s contraction theorem). Let S be a smooth surface and E ⊂ S
a (−1)-curve. Then there exists a birational morphism f called the contraction of E

f : S → T,

so that f contracts only E and T is smooth.

https://s-zikas.github.io/site/pics/RR.jpg
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Before we start the proof, let’s think of what we need to do: recall that a morphism f is
given by sections of the nef divisor D = f∗(OPn(1)). Suppose C is a curve with D ·C = 0.
By the pull-push formula (see Definition 1.5) we have

0 = D · C = f∗(OPn(1)) · C = OPn(1)f∗C.

Since OPn(1) is ample, this can only happen if and only if f(C) is a point. Thus we will
need to find a nef divisor D, that is zero only against E and then prove that D is base-point
free.

Lemma 2.3. Let S be a smooth surface, E a (−1)-curve and D a nef divisor with D2 > 0,
that is zero only against E, i.e.

D · C = 0 ⇐⇒ C = E.

Then h1(S, rD − E) = 0 and h1(S, rD − 2E) = 0 for r � 0.

Proof. For large k the divisor kD − E is positive against every curve and (kD − E)2 > 0
and so it’s ample by Theorem 1.3. Thus, by Theorem 1.15, h1(S,OS(n(kD − E))) = 0 for
some large n. Let r = nk and define the divisors

A = rD − nE, and Ai = A+ iE.

Note that A0 = A and An−1 = rD − E. We will show that hi(S,OS(Ai)) = 0 for all
0 ≤ i ≤ n− 1, by induction on i.

The base case, i = 0 is by the choice of A0. Suppose it’s true for all j < i. We consider
the exact sequence

0→ OS(−E)→ OS → OE → 0.

Tensor by Ai and pass to the long exact sequence in cohomology to get

· · · → H1(S,OS(Ai−1))→ H1(S,OS(Ai))→ H1(E,OS(Ai))→ · · ·
The left hand term is zero; if we show that the right hand term is also zero then we are
done. However

h1(E,OS(Ai)) = h0(E,OS(KE −Ai))
and

deg(KE −Ai) = deg(KE)− deg(D|E) + (n− i) deg(E|E) = −2− (n− i) < 0.

Therefore we conclude. �

Proof of Theorem 2.2. Let A be a very ample divisor on S. Define the divisor

D := A+ rE,

where r = A · E. This is nef and only zero against E. Since this property is preserved
under scaling, we may assume that h1(D − E) and h1(D − 2E) are zero by Lemma 2.3.

First of all notice that D has no base points away from E: indeed, let U be any neigh-
bourhood of S so that E has local equation {t = 0}; then D has at least the sections

〈a0tr, a1tr, . . . , aktr〉
where ai are sections of A; since A is very ample these sections have no common zeroes.

We will now show that D has no base points along E. It suffices to find a section of D
that is nowhere zero along E. Consider the exact sequence

0→ OS(−E)→ OS → OE → 0.

Tensor by OS(D) and go to cohomology to get

· · · → H0(S,OS(D))
res−→ H0(E,OE(D))→ H1(S,OS(D − E))→ · · ·
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Since E ∼= P1 and degOE(D) = 0, we have OE(D) = OP1 and so H0(E,OE(D)) = C. By
Lemma 2.3 H1(S,OS(D−E)) = 0 and so the restriction map is surjective. Therefore there
exists a section δ0 ∈ H0(S,OS(D)) whose restriction to E is nowhere zero. �

Sketch of proof for the smoothness of T . Denote by p the image of E under f . We actually
want to show that T is smooth at p and f is the blowup of T at p, i.e. there exist a
commutative diagram

E ⊂ S0
f //

��

p ∈ T0
��

P1 ⊂ Bl0A2 // 0 ∈ A2

where S0 and T0 are neighbourhoods of E and p respectively, and the vertical arrows are
local isomorphisms.

Let T ⊂ Pn with coordinates Xi; we would like to simply take T0 to be X0 6= 1 and
T0 → A2 to be the projection (1 : X1 : . . . : Xn) 7→ (X1, X2). The morphism f is given by
some basis 〈δ0, δ1, δ2, . . . , δk〉 of H0(S,D). Thus, this would correspond to picking a basis
so that S0 = {δ0 6= 0} and the morphism S0 → A2 to by given by the ratio

(
δ1/δ0, δ2/δ0

)
.

Recall that

Bl0A2 = {(x0, x1), (u0 : u1) ∈ A2 × P1 |x0u1 − x1u0 = 0}

and the morphism to A2 is given by the projection to the first factor. On the chart u0 = 1
we can check that E = {x0 = 0} and x1 = u1x0, and so the functions xi vanish with
multiplicity 1 on E. Moreover, since x0

x1
= u0

u1
, the xi act as coordinates on the exceptional

divisor P1.
As before we consider the cohomology sequence

(?) · · · → H0(S,OS(D − E))
res−→ H0(E,OE(D − E))→ H1(S,OS(D − 2E))→ · · ·

We get that H0(E,OE(D − E)) = H0(P1,OP1(1)) and, by Lemma 2.3, H1(S,OS(D −
2E)) = 0. Thus we may lift a basis of {ξ1, ξ2} of H0(P1,OP1(1)) to sections δ1, δ2 ∈
H0(S,OS(D − E)) ≤ H0(S,OS(D)).

In this setup we have

S0 → Bl0A2

x 7→
(
δ1
δ0
, δ2δ0

)
, (δ1 : δ2)

E 7→ (0, 0)× P1

By construction both E ⊂ S0 → P1 ⊂ Bl0A2 and p ∈ T0 → 0 ∈ A2 are local bijections.
With more work one can show that they are local isomorphisms (see [Mat02, Theorem
1.1.6]). �

Remark 2.4.

(1) If one replaces the (−1)-curve E with a rational curve such that E2 = −n then both
Lemma 2.3 and the first part of the proof of Theorem 2.2 work with very minor
adjustments. Thus there always exists a morphism f : S → T contracting such an
E.

What is certainly not true is that f is locally a blowup. One can again modify the
arguments and use (?) to lift a basis of H0(P1,OP1(n)) instead; in that case we get
that S → T looks locally like the blowup of the cone over a rational normal curve
of degree n at the vertex (see Hirzebruch surfaces as blowups of cones).



10 ALGEBRAIC SURFACES & THE SARKISOV PROGRAM.

(2) Another direction one could take is to replace E with a non-rational curve with
E2 < 2. One of the crucial steps in the proof is that

D · E = 0 =⇒ OE(D|E) = OE ,
which could potentially fail if E is not rational (see Exercise 3). In fact, in a sense,
this is a speciality condition: for a curve C of genus g, divisors of degree 0 are
parametrized by the variety Pic0(C) of dimension g.

2.1. Extremal contractions. Note that, in the proof of Theorem 2.2 in order to contract
E, it sufficed to find a nef and base point free divisor D that was zero against E; Then the
corresponding morphism fD automatically contracts E.

This is a numerical property : if E′ were another curve with D · E′ = 0 then fD would
contract E′; in particular numerically equivalent curves are contracted together. Vice versa,
if D′ were a divisor with D′ · E = 0 then fD′ would contract E.

For a morphism π : X → Y we define the relative cone of the morphism NE(π) (or
sometimes NE(X/Y )) to be the subcone of NE(X) spanned by classes of curves contracted
by π. We then have the following rigidity result:

Proposition 2.5 ([Deb01, Proposition 1.14]). Let π : X → Y be a morphism of projective
varieties. Then the subcone NE(π) ≤ NE(X) is extremal, i.e. if a, b ∈ NE(X) with a+ b ∈
NE(π), then a, b ∈ NE(π).

Suppose that π is a contraction and let π′ : X → Y ′ be another morphism.

• If NE(π) is contained in NE(π′) then there is a unique morphism f : Y → Y ′ such
that π′ = f ◦ π.
• In particular the morphism π is determined uniquely by NE(π) (up to isomorphism).

Corollary 2.6. A bijective morphism between projective varieties is an isomorphism.

Definition 2.7. Let X be a projective variety and E ⊂ NE(X) be an extremal subcone. A
contraction π : X → Y is called the contraction of E if for every curve C ⊂ X we have

π(C) = pt. ⇐⇒ [C] ∈ E .
If such a contraction exists, it is unique (up to isomorphism) by Proposition 2.5.

Beware that not every extremal subcone of NE(X) is contractible (see Exercise 3).

3. Overview of the MMP in dimension 2

The philosophy of the MMP for the birational classification of surfaces is the following:

MMP1 Find a good representative in each birational equivalence class;

MMP2 Study the properties of this good representative;

MMP3 In case there are more than one good representatives, study the birational relations
among them.

MMP4 Construct moduli spaces.

3.1. Contraction of K-negative curves. Since we are interested in birational classifica-
tion, Castelnuovo’s contraction theorem shows that we can ignore (−1)-curves. This idea
was used by the Italian school of algebraic geometry in the 19th century, to produce the so
called Enriques Classification of Surfaces.

However, the notion of a (−1)-curve is one that does not generalize well to higher dimen-
sions. Thus, if one has any hope of achieving a similar classification in higher dimension,
one should adopt a different viewpoint. It turns out that the correct notion is the positivity
of the canonical divisor, as Proposition 3.1 hints at.

https://s-zikas.github.io/site/pics/curves%26Surfaces.png
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Proposition 3.1. Let E be an irreducible and reduced curve on a surface S. Then E is a
(−1)-curve if and only if

KS · E < 0 and E2 < 0.

Proof. See Exercise 1. �

The rest of the section is dedicated to showing that, not only (−1)-curves, but also every
curve that is negative against the canonical divisor can be contracted.

Theorem 3.2 (Hodge Index Theorem). The intersection form on S has signature (1, ρ(S)− 1).
In particular, if E is a non-zero divisor so that D ·E = 0 for some divisor D with D2 > 0,
then E2 < 0.

Theorem 3.3. Let S be a smooth surface, and E a curve spanning an extremal ray of
NE(S), with KS · E < 0. The the contraction f : S → T of the ray spanned by E exists.

Proof. Choose a nef divisor D so that

D · C = 0 ⇐⇒ C ≡ rE.

We then take cases based on D2.
D2 > 0

Then, by Theorem 3.2, E2 < 0 and, by assumption, KS · E < 0. Thus, by Proposition
3.1, E is a (−1)-curve and the required morphism is the one of Theorem 2.2.

D2 = 0
We may assume that D has no fixed component, otherwise, we replace it by its movable

part. Recall from the proof of Proposition 1.11 that

# of base points ≤ D2 = 0,

and so D is base point free. �

Remark 3.4.

(1) Note that in the first case we don’t claim that the contraction is given by the divisor
D: a priory, it could be that D is not semiample (recall that in the proof of Theorem
2.2 we chose a very special divisor D). It turns out however that D is indeed
semiample (see Theorem 5.8).

(2) In the second case, D2 = 0, the corresponding morphism has target a variety of
lower dimension: indeed note that, by construction, D = f∗OT (1); if dimT = 2,
then D2 > 0.

(3) Since we only contract curves that are numerically proportional to one curve the
Picard rank drops by 1 in all cases, i.e. ρ(S) = ρ(W ) + 1. In particular if W is a
curve, ρ(S) = 2 and if W is a point, ρ(S) = 1.

3.2. The MMP algorithm and its outputs.

Definition 3.5 (Minimal Models). Let S be a smooth projective surface. Then S is called
a minimal model if KS is nef.

Definition 3.6 (Mori fiber spaces). A morphism f : S → B is called a Mori fiber space
(Mfs for short) if f is the contraction of a KS-negative extremal ray (see Theorem 3.3)
with dimS > dimB.

We now have enough to state the MMP (pseudo-)algorithm in dimension 2.
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Start

S smooth proj. surface

KS nef? S is a minimal model End

There exists f : S → W
contracting a
K-negative ray

dimW < dimS?
f : S → W is a
Mori fibre space End

f : S → W is
the contraction
of a (−1)-curve

S := W
Yes

No

YesNo

Note that, by Remark 3.4(3), this algorithm indeed terminates.

3.3. Dichotomy and MMP for uniruled surfaces.

Theorem 3.7 (Easy Dichotomy Theorem). Let S be a smooth surface. Then the end result
of an MMP starting from S is a Mori fiber space if and only if there exists a nonempty open
neighbourhood U ⊂ S such that: for every p ∈ U there exists an irreducible curve p ∈ C so
that KS · C < 0.

Proof. Assume that the end result of an MMP is a Mori fiber space φ : T → B. Then
f : S → T is a composition of contractions of (−1)-curves. We then have the ramification
formula

KS = f∗KT +R,

where R is an effective divisor supported on curves contracted by f .
If B is a curve, choose U = (φ ◦ f)−1(B \ φ ◦ f(R)). For any p ∈ U let C be the curve

(φ ◦ f)−1(φ ◦ f(p)). Then

KS · C = (f∗KT +R) · C = KT · f∗C = KT · φ−1(φ ◦ f(p)) < 0,

where the last inequality comes from the fact that φ contracts only KT -negative curves.
If B is a point , choose U = S \ R. Note that f(R) is a finite number of points. For

any p ∈ U choose a curve C ⊂ T passing though f(p) but not f(R)2. Then again we may
calculate that KS · f−1C < 0.

2convince yourselves that this is possible
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Now assume that there exists such U ⊂ S but some MMP on S ends with a minimal
model f : S → T . Write again the ramification formula

KS = f∗KT +R;

choose a point p ∈ U \ R and a curve C containing p with KS · C < 0. Note that since
p ∈ C and p 6∈ R, C 6⊂ R and so R · C ≥ 0. We then have

0 > KS · C = (f∗KT +R) · C = KT f∗C +R · C ≥ KT f∗C,

which is a contradiction, since KT is nef. �

Corollary 3.8. If the result of some MMP is a Mori fiber space/minimal model, then the
result of every MMP is a Mori fiber space/minimal model.

Definition 3.9. A variety X of dimension n is called ruled/uniruled if there exists a
birational/generically finite rational map

W × P1 99K X,

where W is a variety of dimension n− 1.

Remark 3.10. We can always assume that W in Definition 3.9 is smooth, simply by

considering the composition Ŵ × P1 → W × P1 99K X, where Ŵ → W is a resolution of
singularities.

Proposition 3.11. Let S be a uniruled surface. Then, for a general p ∈ S, there exists a
rational curve C so that KS · C < 0.

In particular the result of any MMP from S is a Mori fiber space.

Proof. Since S is uniruled there exists a generically finite rational map C×P1 99K S, where
C is a smooth curve. By Proposition 1.11 we have a diagram

W
s
zz

r

��
C × P1 // S

where s is a composition of blowups and r is a generically finite morphism.
Denote by π1 and π2 the projection to the two factors of C × P1 and, for a point x ∈ C,

denote by Fx the fiber π−11 (x). Then KC×P1 = π∗1KX + π∗2OP1(−2) and so

KC×P1 · Fx = −2.

The ramification formulas for s and r give

KW = s∗(KC×P1) +Rs and KW = r∗KS + Er +Rr,

where Er is a divisor contracted by r. Let q ∈ W \ (Rs ∪ Er), Fx a fiber containing s(q)

and denote by F̂x = s−1Fx. Then

KW · F̂x = KC×P1 · Fx +Rs · F̂x = −2

and

deg(r|
F̂x

)KS · r(F̂x) = KS · r∗F̂x = r∗KS · F̂x = (KW − Er −Rr) · F̂x ≤ −2,

which implies that KS · r(F̂x) < 0. Moreover, since r|
F̂x

is finite and F̂x ∼= P1, r(F̂x) ∼=
P1. �
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Later, in Theorem 4.2, we will see that Mori fiber spaces in dimension 2 (and therefore
varieties birational to Mori fiber spaces) are ruled. In particular, in dimension 2, a variety
is unirational if and only if it is ruled. This is very not true in higher dimensions with the
fisrt counterexample given by Iskovskikh and Manin [IM72], in dimension 3.

3.4. Uniqueness of Minimal Models.

Proposition 3.12 (Minimality of minimal models). Let S be a minimal model and T a
smooth surface. Then any birational map f : T 99K S is a morphism.

Proof. By Proposition 1.11 we have a diagram

W
r

~~
s

  
T

f // S,

where r is a composition of blowups. Let Er be a (−1)-curve contracted by r. Writing the
ramification formula for s and intersecting with Er we get

−1 = KW · Er = (s∗KS +Rs) · Er = KS · s∗Er +Rs · Er.
Since KS is nef, this is only possible if Rs ·Er < 0, i.e. Er ⊂ Rs and so Er is contracted by
s. By Proposition 2.5 both r and s factor thought the contraction W →W1 of Er

W
��r

��

s

��
W1r1

{{
s1
$$

T
f // S.

We may repeat this process until we finally show that s contracts all curves contracted by
r, which shows that s factors r, i.e. f is a morphism. �

Proposition 3.12 justifies the name minimal model in the following sense: consider the
partial ordered set of all smooth varieties in a birational equivalence class (up to isomor-
phism) with the ordering

T2 � T1 ⇐⇒ there exists a birational contraction T2 → T1;

let S be a minimal model and suppose that S � T ; then there exist a contraction f : S → T ;
by Proposition 3.12 f−1 is also a morphism, i.e. S ∼= T .

Corollary 3.13. Let S, T be minimal models. Then any birational map between them is
an isomorphism. In particular, minimal models are unique in their birational equivalence
classes.

4. Mori fiber spaces and the Sarkisov program

4.1. Classification of Mori fiber spaces in dimension 2.

Definition 4.1. A morphism f : S → C from a smooth surface S to a smooth curve C is
called a P1-bundle if for every point p ∈ C there exists a neighbourhood p ∈ U ⊂ C and a
commutative diagram

f−1(U)
∼ //

f ��

U × P1

p1��
U U.

Theorem 4.2. Let f : S → B be a Mori fibre space in dimension 2. Then either
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• B is a smooth curve and f : S → B is a P1-bundle or
• S = P2, W = pt and f is the structure morphism.

Furthermore two P1-bundles f1 : S1 → C1 and f2 : S2 → C2 are birational if and only if
C1
∼= C2.

Reminder - the exponential sequence and Pic(X): for a variety over the
complex numbers we have the exponential exact sequence

0→ Z→ OX → O∗X → 0,

where OX → O∗X is locally given by s 7→ es, with kernel the sheaf of
locally constant functions with values in 2πiZ. This induces the corre-
sponding long exact sequence in cohomology in the analytic category.
Moreover we have a natural identification of Pic(X) with H1(S,O∗X):
indeed a divisor D ∈ Pic(X) is a collection {(Ui, fi)}i∈I of open subsets
Ui of S with local equations fi; the glueing data for the fi is the same
data as a Cech cocycle of O∗X .

Proof. We will take cases based on the dimension of the base B.

Case: dim(B) = 1

Denote by F = Fb the fiber f−1(b), for b ∈ B. Note that F 2 = 0 and KS · F < 0 thus,
by the arithmetic genus formula (see Exercise 1), F is a rational curve.

We want to show that there is a neighbourhood b ∈ U ⊂ B so that f−1(U) ∼= U × P1.
Note that, by looking at the projection U×P1 → P1, we get infinite sections of f−1(U)→ U .
We begin by finding these sections.
KS is negative against all fibers of f , which are infinitely many; this implies that KS

cannot be effective, and by Serre duality we get

H2(S,OS) = H0(S,OS(KS)) = 0.

Therefore the cohomology sequence induced by the exponential sequence gives

· · · → Pic(S) ∼= H1(S,O∗S)
η−→ H2(S,Z)→ H2(S,OS) = 0.

Viewing F as a cycle in H2(S,Z), Poincaré duality and unimodularity of the cup product
implies that there exists a class z ∈ H2(S,Z) so that z · F = 1. Using the fact that η is
surjective we find a divisor D ∈ Pic(S) so that η(D) = z, i.e. D · F = 1.

With some work one can show that, for r � 0, the divisor D + rF has sections and the
restriction

H0(S,OS(D + rF ))
res−→ H0(F,OF (D + rF )) ∼= H0(P1,OP1(1))

is surjective. Choose lift a basis of H0(P1,OP1(1)) to a linear system V ≤ H0(S,OS(D +
rF )) and choose p ∈ U ⊂ B so that V has no base points on f−1(U). We then get a
commutative diagram

f−1(U)
φV ×f //

f ""

P1 × U

p2||
U.

As for the furthermore part, if C1
∼= C2

∼= C then S1 and S2 both contain open subsets
isomorphic to C × U and so they are birational. Assume now that S1 is birational to S2
and let χ : S1 → S2 be a birational map. If both C1 and C2 are rational then we are done.
So, without loss of generality, assume that g(C2) ≥ 1. Then χ maps fibers to fibers: indeed,
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choose a fiber F1 away from any base points of χ and suppose that χ(F1) is not a fiber;
then f2 ◦ χ : F1 → C2 gives a finite morphism, which is impossible since g(F1) < g(C2).

We will now show that χ maps sections to sections too. Choose Ui ⊂ Ci open trivializing
subsets for Si → Ci, i.e. f−1i (Ui) ∼= Ui × P1. Then, since χ|U1×P1 preserves intersection
numbers and maps fibers to fibers, the image of a section U1 × 0 is a section U2 × p. Thus
U1
∼= U2 via

U1
∼= U1 × 0

χ−→ U2 × p ∼= U2

and so C1 is birational to C2. Since Ci are smooth, they are isomorphic.

Case: dim(B) = 0

In this case ρ(S) = 1 and so NE(S) = NE(S). Moreover −KS is positive against all
curves on S and thus ample by Theorem 1.3. Let H be an ample generator of Pic(S) and r
an integer so that −KS = rH. Moreover, by Theorem 1.18 for A = −KS and A = (1+r)H
we get

H1(S,OS) = H2(S,OS) = 0 and H1(S,OS(H)) = H2(S,OS(H)) = 0.

The exponential sequence then yields

Pic(S) = H2(S,Z)

and, by Poincaré duality and the unimodularity of the cup product, H2 = 1. Moreover
χ(OS) = h0(S,OS) = 1 and the Riemann-Roch gives

h0(S,OS(H)) =
(H −KS)H

2
= χ(OS) =

1 + r

2
+ 1 ≥ 2.

Thus, there exists a (necessarily irreducible and reduced) curve C ∈ H0(S,OS(H)). The
arithmetic genus formula (see Exercise 1) yields

0 ≤ h1(D,OD) =
(H +KS)H

2
+ 1 =

1− r
2

+ 1 ≤ 1,

i.e. either r = 1 or r = 3.
Subcase: r = 3 In this case h0(S,OS(H)) = 3, D ∼= P1 and the exact sequence

· · · → H0(S,OS(H))→ H0(D,OD(H)) ∼= H0(P1,OP1(1))→ H1(S,OS) = 0

shows that the complete linear system H0(S,OS(H)) has no base points. It therefore gives
a finite morphism φH : S → P2. Finally

1 = H2 = deg(φH)OP2(1)2 = deg(φH),

so φH is an isomorphism.

Subcase: r = 1 In this case h0(S,OS(H)) = 2 and so H0(S,OS(H)) must have a (unique)
base point p: otherwise we would get a surjective morphism S → P1 which is impossible
since ρ(S) = 1. Moreover D is an elliptic curve. However OD(H) = OD(p) which is
effective, and so the exact sequence

· · · → H0(S,OS(H))→ H0(D,OD(p))→ H1(S,OS) = 0

shows again that H has no base points on D, a contradiction!
�

Remark 4.3.

(1) In the last subcase, one can avoid working with elliptic curves and instead use a
Bend-and-Break argument to find a (singular) rational curve D0 ∈ H0(S,OS(H))
(see Exercise 9).
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(2) In the same subcase we obtained a contradiction to −KS being base point free from
the fact that ρ(S) = 1. There does exist a surface with the same numerics (−KS

ample and (−KS)2 = 1) where everything else works as intended; However this
surface has Picard rank ρ(S) = 9 (see Exercise 12)

4.2. Some fundamental examples - low degree and Hirzebruch surfaces.

Reminder - the adjunction formula: Let Y ⊂ X be smooth varieties, so that
dimY = dimX − 1. Then KY = (KX + Y )|Y .

Lemma 4.4. Let S ⊂ P3 be a smooth surface. Then −KS is ample if and only if deg(S) ≤
3.

Proof. By the adjunction formula −KS = (4− deg(S))H|S . Moreover H|S is ample and so
we conclude. �

Quadric surfaces: we will show that smooth quadric surfaces are all isomorphic to P1×P1.

Lemma 4.5. The cone NE(P1×P1) is generated by the classes of fibers of the two fibrations
P1 × P1 → P1.

Proof. First note that ρ(P1×P1) = 2: indeed, let (u0 : u1), (v0 : v1) be the coordinates and

let C = {fi,j = 0} be a curve, where fi,j is a curve of bidegree (i, j); then f :=
fi.j

ui0v
j
0

is a

well-defined rational function with div(f) = C− iF1− jF2, where F1 and F2 are the classes
of fibers of the the two projections. By Proposition 2.5 F1 and F2 span extremal rays.
Since ρ(P1 × P1) = 2, NE(P1 × P1) has at most 2 extremal rays and so we conclude. �

Remark 4.6. The first claim is very not true for arbitrary products: Let C be an elliptic
curve, S = C × C and ∆ be the diagonal; KS = p∗1KC ⊗ p∗2KC = 0 and the arithmetic
genus formula yields

1 = pa(∆) =
∆2

2
+ 1 =⇒ ∆2 = 0;

assuming that ∆ = a1F1 + a2F2 and intersecting with F1 and F2 we get that a1 = a2 = 1;
but then ∆2 = 2, a contradiction.

Lemma 4.7. Let D be a divisor of bidegree (1, 1) in P1 × P1. Then D is very ample and,
up to a choice of basis, its complete linear system gives an isomorphism

P1 × P1 → {x0x3 − x1x2 = 0} ⊂ P3.

Proof. We have the basis

H0(P1 × P1,OP1×P1(1, 1)) = 〈u0v0, u0v1, u1v0, u1v1〉.

We may check that the corresponding map has no base points and thus gives a morphism to
P3, whose image is {x0x3−x1x2 = 0}. This map is clearly generically one-to-one. Moreover
D · Fi = 1 and so, by Lemma 4.5 and Theorem 1.3, it is ample and therefore contracts no
curves. We conclude it’s an isomorphism by Proposition 2.5. �

Proposition 4.8. A smooth quadric surface S ⊂ P3 is isomorphic to P1 × P1.

Proof. By Lemma 4.7 it suffices to show that, given a smooth quadric {q = 0} with

q =
∑

qi,jxixj ,

https://s-zikas.github.io/site/pics/italianSchool.jpg
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we can change coordinates to x0x3 − x1x2. Note that q can be identified with a quadratic
form Q via

2q(x0, x1, x2, x3) = (x0, x1, x2, x3)


2f0,0 f0,1 f0,2 f0,3
f1,0 2f1,1 f1,2 f1,3
f2,0 f2,1 2f2,2 f2,3
f3,0 f3,1 f3,2 2f3,3



x0
x1
x2
x3

 .

The action of a matrix M ∈ GL4 to q corresponds to acting on Q via MQM t. Acting with
suitable matrices we can always diagonalize Q, i.e. change coordinates so that

q 7→ q′ = x20 + x21 + x22 + x23 = (x0 + ix1)(x0 − ix1) + (x2 + ix3)(x2 − ix3).

Acting once more by the inverse of the matrix

M =


1 0 0 1
i 0 0 −i
0 1 1 0
0 i −i 0


we get to the required form. �

Cubic surfaces: we will show that smooth cubic surfaces are isomorphic to P2 blown up at
6 points in general position, that is no 3 on a line and no 6 on a conic.

In what follows S will denote the blowup of P2 along 6 points p1, . . . , p6 in general posi-
tion, with exceptional divisors E1, . . . , E6. Then, by Proposition 1.7, Pic(S) = 〈L,E1, . . . , E6〉,
where L denotes the pullback of the class of a line in P2.

Lemma 4.9. The anti-canonical divisor −KS is ample. Moreover there exists exactly 27
irreducible curves with the property −KS · C = 1.

Proof. Denote by li,j the strict transform of the unique line thought the points pi, pj and
by ci the strict transform of the unique conic thought the points p1, . . . , p̂i, . . . p6. We then
have

−KS = 3L− E1 − . . .− E6

and we may calculate that

−KS · Ei = 1, −KS · li,j = 1, −KS · ci = 1;

these give exactly 6 +
(
6
2

)
+ 6 = 27 classes that are 1 against −KS .

Let C be an irreducible curve, not one of the above, such that −KS · C ≤ 1. By
Proposition 1.7 C ∼ dL − m1E1 − . . . − m6E6 with d > 0 and mi ≥ 0. Without loss of
generality assume that m1 ≥ m2 ≥ . . . ≥ m6. Since C · c6 ≥ 0 and C · l1,6 ≥ 0,

c6 = 2d−m1 − . . .−m5 and 0 ≤ d−m1 −m6

=⇒ 3d−m1 − . . .−m6 ≥ m1 =⇒ −KS · C ≥ m1.

If −KS · C = 0 then m1 = . . . = m6 = 0 and then d = 0, a contradiction. If −KS · C = 1
then mi ≤ 1 which gives d = 1 or 2 and in turn implies that C = li,j or C = ci for some
1 ≤ i, j ≤ 6, again a contradiction. �

Proposition 4.10. The anti-canonical divisor −KS is very ample and defines an embed-
ding S → T ⊂ P3, where T is a smooth cubic surface.
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Proof. Since −KS is ample by Lemma 4.9, by Theorem 1.18 applied for A = −KS and A =
−2KS respectively, we get h1(S,OS) = h2(S,OS) = 0 and h1(S,−KS) = h2(S,−KS) = 0.
We may compute that (−KS)2 = 3 and so Riemann-Roch gives

h0(S,−KS) = (−KS)2 + 1 = 4.

We first show that −KS is bpf. Let p be a base point of −KS and let E ∈ |−KS | be an
irreducible curve. We then have

(res) · · · → H0(S,−KS)→ H0(E,−KS |E)→ H1(S,OS) = 0

Since −KS |E is effective, we may lift constant sections to show that −KS has no base
points on E, and therefore no base points at all.

We now show that −KS is very ample. Let f : S → T ⊂ P3 be the morphism associated
to −KS and let S → S′ → T be its Stein factorization, i.e. S → S′ has connected fibers
and S′ → T is finite. Since −KS is ample, it cannot contract any curves, i.e. S ∼= S′.
Assume that f : S → T is finite. Since −KS is base point free then a general E ∈ | −KS |
is smooth. Choose such E so that it’s not contained in the ramification locus of S → T . E
is an elliptic curve and −KS |E is a divisor of degree 3. By Riemann-Roch on E we get

h0(E,−KS |E − p) = h0(E,−KS |E)− 1 and h0(E,−KS |E − p− q) = h0(E,−KS |E)− 2

and so −KS |E is very ample. Moreover (res) shows that f |E coincides with the morphism
given by −KS |E and is thus an isomorphism, i.e. f is an isomorphism.

Finally we have

deg(T ) = T · OP3(1)2 = (OP3(1)|T )2 = OT (1)2 = f∗(OT (1))2 = −K2
S = 3.

�

Remark 4.11 (27 lines). With respect to the embedding given by −KS, lines are curves
with −KS · C = 1. Lemma 4.9 shows that there are precisely 27 lines in T .

Proposition 4.12. Let T ⊂ P3 be a smooth cubic surface. Then

(1) T contains a line;
(2) if l is a line in T , then the projection T → P1 has r singular fibers, with 2 ≤ r ≤ 5;
(3) T contains at least a configuration of r + 1 skew lines.

Proof. Consider the correspondence

X =
{

(T, l) ∈ P (|OP3(3)|)×G(2, 4)
∣∣ l ⊂ T}

with the two projections p1 and p2.
We will first study the second projection. First of all p2 is surjective. Let l be a line and,

without loss of generality, l = {x0 = x1 = 0}. Then

p−12 (l) = {f(x0, x1, x2, x3)x0 + g(x1, x2, x3)x1 = 0}

which has dimension
(
3+2
3

)
+
(
2+2
2

)
− 1 = 15. Thus dim(X ) = 15 + 4 = 19.

We only need to show that the first projection is surjective. Since dim(X ) = 19 =
dimP (|OP3(3)|), p1 can only fail to be surjective if all the fibers have positive dimension.
By lower semi-continuity of the dimension of the fibers, it suffices to find a cubic surface
with only finitely lines. For that we may choose a cubic as in Proposition 4.10 and conclude
by Remark 4.11. This is (1).

Let l ⊂ T be one of the lines in (1) and consider the projection from l

P3 99K P1

(x0 : . . . : x3) 7→ (x0 : x1).

https://s-zikas.github.io/site/pics/27lines.png
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This extends to a morphism T → P1. For a point (λ0 : λ1) ∈ P1 the fiber of T → P1 is
residue of the intersection of the plane Πλ0,λ1 := {λ1x0 − λ0x1 = 0} with T . This is of the
form

α0,0(λ1, λ2)x
2
2 + α0,1(λ1, λ2)x2x3 + α1,1(λ1, λ2)x

2
2 +

β0,2(λ1, λ2)x1x2 + β1,2(λ1, λ2)x1x3 +
γ2,2(λ1, λ2)x

2
1 = 0,

where αi,j , βi,j and γi,j are linear, quadratic and cubic in λ1, λ2 respectively. This, up to
multiplying by 2, corresponds to the quadratic form

Q(λ1, λ2) =

 2α0,0(λ1, λ2) α0,1(λ1, λ2) β0,2(λ1, λ2)
α0,1(λ1, λ2) 2α1,1(λ1, λ2) β1,2(λ1, λ2)
β0,2(λ1, λ2) β1,2(λ1, λ2) 2γ2,2(λ1, λ2)


and is singular precisely when Q drops rank or equivalently when det(Q) = 0. This is a
homogenous polynomial of degree 5 in λ1, λ2 and thus will have between 1 and 5 distinct
roots. Furthermore if det(Q) = 0 has exactly one solution, up to a change of coordinates,
we may assume that the singular fiber is the intersection with the plane {x0 − λ0x1 = 0}
and det(Q) = λ50. Imposing the corresponding conditions on the equation of T we see that
then either T has a triple point or is double along l. Since we assume that T is smooth,
det(Q) = 0 has between 2 and 5 distinct roots; this is (2).

The singular fibers of (2) correspond to triangles of coplanar lines

∆1 = {l, l1,1, l1,2}, . . . , ∆r = {l, lr,1, lr,2}.
Repeating the process by replacing l with µ = l1,1 we get another set of triangles

A1 = {µ, µ1,1, µ1,2}, . . . , Ak = {µ, µk,1, µk,2}.
Note that the line µk,1 can intersect at most one of the li,1, li,2: otherwise it would intersect
the corresponding plane in 2 points; but then it would be contained in that plane, which
is impossible since the unique plane containing l, µ also contains the unique third line
l1,2 = µ1,2 6= µk1 . Thus, up to possibly reordering, {µk,1, l1,1, . . . , lr,1} is a configuration of
r + 1 skew lines. �

Corollary 4.13. Every smooth cubic surface is T isomorphic to P2 blown up at 6 points
in general position.

Proof. We first prove that every line is a (−1)-curve. Indeed, let l be a line, then

KT · l = OT (−1) · l = OP3(−1) · l = −1.

Moreover l ∼= P1 and so, by the arithmetic genus formula, l2 = −1.
Proposition 4.12(2) implies that ρ(T ) = r + 2: indeed we choose a (−1)-curve in each

fiber and contract them T → W → P1; the end result will give us a P1-bundle (see proof
of Theorem 4.2), since all remaining fibers are smooth conics or lines and so

ρ(T ) = ρ(W ) + r = r + 2.

By 4.12(3), there exists a configuration of r+ 1 skew lines; contracting it T →W we get
that W is a Mori fiber space of Picard rank 1, i.e. W ∼= P2 and T is the blowup of P2 along
r + 1 points, with 1 ≤ r ≤ 5. Finally it suffices to notice that

3 = (−KT )2 = (−KP2)2 − (r + 1) = 9− r − 1 =⇒ r = 5.

�

Finally we compute the cone of curves of a smooth cubic surface.
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Proposition 4.14. Let S be a smooth cubic surface. Then NE(S) is a rational polyhedral
cone spanned by the classes of the 27 lines on S.

Proof. Since −KS is ample, KS is negative against every curve. By Theorem 3.3 every
extremal ray of NE(S) is contractible and, by Proposition 2.5, it suffices to find all contrac-
tions S →W with ρ(S)− ρ(W ) = 1. Again by Theorem 3.3 these can only be contractions
of (−1)-curves, i.e. all extremal rays are spanned by (−1)-curves. It suffices to notice that
a curve is a (−1)-curve on S if and only if it is a line: one direction was proved in Corollary
4.13; as for the inverse, if C is a (−1)-curve, then by the arithmetic genus formula

1 = −KS · C = H|S · C;

thus C is a curve of degree 1 in P3, i.e. a line. �

Remark 4.15. Singular cubic surfaces with only double points arise again as the blowup
of P2 at six points, but this time not in general position; this also includes infinitely near
points. For a very comprehensive treatment of the subject see [Dol12, Chapter 9].

The many manifestations of Hirzebruch surfaces

Definition 4.16. We define the n-th Hirzebruch surface to be the surface

Fn :=
{

(x0 : x1 : x2), (u0 : u1) ∈ P2 × P1
∣∣x0un1 − x1un0 = 0

}
.

In particular, F1 is the blowup of P2 along a point and F0 is isomorphic to P1 × P1.
Note that the projection to the second factor p2 : Fn → P1 is a P1-bundle.

Hirzebruch surfaces come in many manifestations; different ones allow for certain calcu-
lations to be carried out easier.

As GIT quotients: Consider C4 with coordinates (y0, y1, v0, v1) and the following linear

action of G := (C∗)2 on U := C4 \
(
{y0 = y1 = 0} ∪ {v0 = v1 = 0}

)
:

ρn : G× U → U
(λ, µ), (y0, y1, v0, v1) 7→ (λy0, µ

−nλy1, µv0, µv1).

All points on U are semi-stable with respect to ρn, that is for any x ∈ U , 0 6∈ G · x; this
implies that the projective quotient Sn := P(U)//G exists. Furthermore, all points are
actually stable, i.e. they are semi-stable, their orbit G · x is closed and all stabilizers Gx
are finite; thus the quotient Sn is geometric. One of the very desirable properties that
this entails is that subvarieties of Sn are cut out by polynomials in k[y0, y1, v0, v1] whose
zero locus is invariant under the action of G (see [Bri09] for an introduction to actions of
algebraic groups, and more specifically Proposition 1.31).

A compact way to write this data is with the grading matrix

y0 y1 v0 v1(
1 1 0 0
0 −n 1 1

)
where the vertical bar indicates the irrelevant ideal.

We then have an isomorphism

Fn → Sn

(x0 : x1 : x2), (u0 : u1) 7→


(
x0 : x1

un0
;u0 : u1

)
, when u0 6= 0(

x0 : x2
un1

;u0 : u1

)
, when u1 6= 0

(y0 : y1u
n
0 : y1u

n
1 ), (v0 : v1) ←[ (y0 : y1 ; v0 : v1).
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Proposition 4.17. Denote by σ, σ+ ⊂ Fn the curves {y1 = 0} and {y0 = 0} respectively
and by f = {v0 = 0}. Then Pic(Fn) = 〈σ+, f〉.

Moreover the following relations determine intersection theory on Fn:

(1) σ · f = σ+ · f = 1;
(2) σ+ ∼ σ + nf ;
(3) σ · σ+ = 0, f2 = 0 and σ2 = −n.

Proof. Subvarieties in Fn are cut out by polynomials in y0, y1, v0, v1 that are homogenous
of some bidegree (i, j) with repsect to ρn, i.e.

f((λ, µ)(y0, y1, v0, v1)) = λiµjf(y0, y1, v0, v1).

For a curve C cut out by a polynomial fi,j of bidegree (i, j) we have

C − (iσ + jf) = div

(
fi,j

yi0v
j
0

)
,

which shows that σ+ and f generate Pic(Fn). Note that i, j don’t necessarily have to be
positive.

The intersection between σ and σ+ with f are the points (1 : 0 ; 0 : 1) and (0 : 1 0 : 1)
respectively. Consider the rational functions y0

y1vn0
and v0

v1
; their divisors give us linear

equivalences σ+ ∼ σ + nf and f ∼ f1, where f1 := {v1 = 0}. Moreover σ, σ+ and f , f1
don’t intersect set theoretically and

σ2 = σ(σ+ − nf) = −n.

�

Proposition 4.18. The complete linear system of σ+ determines a contraction π : Fn → S
with NE(π) = R+σ. In particular NE(Fn) = R+σ ⊕ R+f .

Proof. As always we want to find a nef divisor, zero against only σ and show that it’s base
point free. By Proposition 4.17, σ+ · σ = 0. This is a divisor of bidegree ( 1

0 ) and so we
may easily compute the basis

H0(Fn, σ+) = 〈y1vn0 , y1vn−10 v1, . . . , y1v
n
1 , y0〉.

We immediately see that σ is bpf. �

Notice that the image S ⊂ Pn+1 is cut out by equations

rank

(
z0 z1 . . . zn−1
z1 z2 . . . zn

)
= 1.

Note that these are only in the first n + 1 factors; moreover these equations are the ones
defining the Veronesse embedding

νn : P1 → Pn
(t0 : t1) 7→ (tn0 : tn−10 t1 : . . . : tn1 ).

This shows that S is the cone over νn(P1) ⊂ Pn = {zn+1 = 0} with vertex (0 : 0 : . . . : 1).

As the blowup of the cone over a rational normal curve: By Remark 2.4 that the contrac-
tion of a (−n)-curve locally looks like the blowup of the cone over a rational normal curve.

We will actually show that Hirzebruch surfaces are the “global models” for this. For this
we will repeat the same strategy.
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Consider the divisor σ+ − σ ∼ nf . Then a basis for its global sections is

H0(Fn, nf) = 〈vn0 , vn−10 v1, . . . , v
n
1 〉.

Parallel to the proof of Theorem 2.2 the restriction morphism

H0(Fn, nf)→ H0(σ, nf |σ) ∼= H0(P1,OP1(n))

is surjective.
Consider the morphism

Fn → Pn+1
z ×Pnw

(y0 : y1; v0 : v1) 7→ (y1v
n
0 : y1v

n−1
0 v1 : . . . : y1v

n
1 : y0),(v

n
0 : vn−10 v1 : . . . : vn1 ).

Composing with the projection to the first factor we get the morphism of Proposition 4.18.
The image S̃ of Fn satisfies the equations

rank

(
z0 z1 . . . zn−1
z1 z2 . . . zn

)
= rank

(
z0 z1 . . . zn
w0 w1 . . . wn

)
= 1.

The restriction of the projection to the first factor S̃ → S is the blowup of S along the
vertex.

As rational normal scrolls:
Going back to the proof of Theorem 2.2, in the absence of any other data for the surface

S, −E is the only divisor with the property D ·E = 1. Thus, if we were to repeat the proof
for a (−n)-curve, we could only hope for to lift sections of OP1(n).

In the case of Fn we can be more accurate: we can instead choose the divisor D = σ++df
which is very ample with the properties

D · σ = d and D · f = 1,

i.e. it embeds σ as a curve of degree d and f as a line.

Definition 4.19 (Rational normal scrolls). Let k ≤ l be two integers and fix two embeddings
φ : P1 → Pk+1 and ψ : P1 → Pl+1 given by complete linear systems of degree k and l
respectively. Compose with embeddings in some higher projective spaces, so that they lie in
complementary linear subspaces, i.e.

P1 → PN
(u0 : u1) 7→ Φk(u0, u1) = (φ0, . . . , φk, 0, . . . , 0)

7→ Ψl(u0, u1) = (0, . . . , 0, ψ0, . . . , ψl).

For u ∈ P1, denote by lu the unique line in PN joining the points Φ(u) and Ψ(u). Define
the rational normal scroll as

Sk,l :=
⋃
u∈P1

lu.

The trivial case k = 0 corresponds to the cone over a rational normal curve of degree l.
One can show that Sk,l ∼= Fl−k. More specifically we have:

Exercise 4.20. The divisor σ+ + df is base point free and gives a contraction

fd : Fn → Sd,n+d ⊂ PN .

If moreover d ≥ 1, then fd is an embedding.
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Here’s another way to make sense of σ2 = −n: Consider the scroll S = S1,n+1, with
the curves σ, σ+ being Φ1(P1), Ψn+1(P1) respectively, and fp,q a line joining two points
p ∈ σ and q ∈ σ+. Choose a hyperplane H containing σ; then H cuts σ+ in n + 1 points
q1, . . . , qn. Therefore the lines fpi,qi all intersect H in at least 2 points, which by Bézout’s
theorem implies that fpi,qi ⊂ H. Arguing similarly we get that a hyperplane H+ containing
σ+ will also contain a unique joining line f . All in all we get

H|S ∼ H+|S =⇒ σ + (n+ 1)f ∼ σ+ + f =⇒ σ + nf ∼ σ+,

which implies the desired result given that f intersects σ/σ+ is a unique point.

4.3. The Sarkisov Program. The example of Hirzebruch surfaces highlights the fact
that Mori fiber spaces are very non-unique in their birational equivalence classes3, contrary
to the case of minimal models (see Corollary 3.13). Thus, in view of MMP3 , we need to
study relations among Mori fiber spaces.

While Remark 1.12 gives us a way to factorize any birational map as a composition
of blowups and inverse of them, it is in a sense quite abstract. For example W in the
factorization of Proposition 1.11 can have infinitely many (−1)-curves (see Exercise 6);
understanding which ones s contracts can be difficult.

The Sarkisov program is a way to remedy this. Like the MMP it is again an algorithm
that decomposes a birational map between Mori fiber spaces into simpler ones, called
Sarkiov links. Sarkisov links are simpler because, very roughly, they are resolved by at
most one blowup and one blowdown, making understanding which curves are extracted
and contracted more tractable.

Definition 4.21 (Sarkisov link). A Sarkisov diagram is a commutative diagram of the
form

T
r

��
s
  

S

��

f // S′

��
B

��

B′

~~
R

such that:

(1) S → B and S′ → B′ are Mori fiber spaces;
(2) all morphisms have connected fibers, and moreover r and s are birational;
(3) ρ(T )− ρ(R) = 2;
(4) KT is negative against every curve contracted from T to R.

R is called the base of the diagram. The induced birational map f : S 99K S′ is called a
Sarkisov link.

Note that, on each side of the diagram, there are three contractions; at the same time
the Picard rank drops only by 2. Thus, on each side of the diagram exactly one of the
two morphisms has to be an isomorphism. Taking this into account, together with the
classification of Mori fiber spaces in dimension 2 (see Theorem 4.2) we get the following
types of links:

3this is also true for P1-bundles over non-rational curves; that is, there are infinitely many birational,
non-isomorphic P1-bundles over a fixed curve C.
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Type I

F1

~~ ��
P2

��

P1

~~
pt

Type II

T

�� ��
S

��

S′

��
C

∼ // C ′

Type III

F1

��   
P1

  

P2

��
pt

Type IV

P1 × P1 //

p1
��

P1 × P1

p2
��

P1

��

P1

��
pt.

Links of Type II are known as elementary transformations of P1-bundles. Schemat-
ically, they look like this:

In fact these are the only Sarkisov links between non-rational Mori fiber spaces in dimension
2.

Theorem 4.22 (Sarkisov program, [Cor95, HM13]). Every birational map between Mori
fiber spaces can be decomposed into Sarkisov links.

4.4. Simplicity of Sakrisov links - the 2-ray game. Proposition 2.5 gives a bound on
the number of morphisms from a given variety X: this bound is precisely the number of
extremal rays of the cone NE(X).4 The problem is that, in general, this is not dependent
on some numerics of X. This is however the case when ρ(X) = 2, and that is because a
cone in dimension 2 can have at most 2 extremal rays.

Relative setting. Let π : X → Y be a projective morphism. We define the space of
relative cycles as

Z1(X/Y ) =
{∑

aiCi ∈ Z1(X)
∣∣∣π(Ci) = pt, ∀i

}
.

We define

N1(X/Y ) = {Pic(X)/ ≡Y } ⊗ R and N1(X/Y ) = {Z1(X/Y )/ ≡Y } ⊗ R,
where D1 ≡Y D2 if D1 · C = D2 · C for all C ∈ Z1(X/Y ) and C1 ≡Y C2 if D · C1 = D · C2

for all D ∈ N1(X/Y ).

4recall that this is only a bound since not all extremal rays are contractible, see Exercise 3
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Similar to the absolute setting we have that N1(X/Y ) and N1(X/Y ) are finite dimen-
sional vector spaces, dual to one another with respect to the pairing ≡S ; we define the rel-
ative Picard rank ρ(X/Y ) to be their dimension. Again note that NE(X/Y ) := NE(π)
is a cone in N1(X/Y ). We say that a divisor is relatively ample/nef if it is positive/non-
negative against all curves in NE(X/Y ).

Proposition 2.5 shows that it makes sense to talk about relative extremal contractions:
indeed, if π′ : X → Y ′ is a contraction over Y (i.e. it factors though π), then NE(π′) ≤
NE(X/Y ); vice versa, if π′ : X → Y ′ is a contraction with NE(π′) ≤ NE(X/Y ), then π′

factors though π. In particular, if X → Y is a morphism of relative Picard rank 2, then
there are at most two contractions over Y .

With that in mind reviewing the definition of a Sarkisov diagram shows that the whole
diagram is determined precisely by the morphism T →W . When the base of the diagram
R = B then T , and therefore the whole diagram, is determined by the blowup r : T → S
of just one point.

Note that not all morphisms of relative Picard rank 2 give rise to a Sarkisov diagram.
However conditions (3) and (4) of Definition 4.21 characterize such morphisms.

Definition 4.23 (Rank 2 fibration). A contraction T → R is called a rank 2 fibration
if:

(1) dim(R) < dim(T ) and ρ(T/R) = 2;
(2) (−KT )-relatively ample.

The previous discussion shows that rank 2 fibrations are in one-to-one correspondence
with Sarkisov diagrams, which in turn are in one-to-one correspondence with a Sarkisov
link (and its inverse). The process of recovering a Sarkisov diagram from a rank 2 fibration
is called the 2-ray game.

5. Proof of the Sarkisov program

The initial proof of the Sarkisov program of Corti [Cor95] goes roughly as follows: given
a birational map g : S 99K T one attaches to g a triplet (µ(g), λ(g), e(g)) of rational numbers
and shows that applying an appropriate Sarkisov link χ1 : S 99K S1 and writing the induced
map g1 : S1 99K T we get

(µ(g), λ(g), e(g)) > (µ(g1), λ(g1), e(g1));

then one shows that these triplets satisfy the descending chain condition, i.e. every de-
scending sequence is eventually constant; this shows that the untwisting process of applying
suitable Sarkisov links has to terminate.

Descending/ascending chain conditions appear naturally when one tries to prove termi-
nation of various processes in birational geometry; however they are usually very hard to
prove. For example the untwisting process, while making the Sarkisov program algorithmic,
is only valid in dimensions 2 and 3.

Our approach here follows that of Hacon and McKernan [HM13], which is more abstract
and less algorithmic but valid in all dimensions.

5.1. D-MMP.

Definition 5.1 (D-MMP). Let S be a smooth surface and D be a Q-divisor. A D-MMP
is a sequence of contractions fi : Si−1 → Si of a Di-negative extremal ray of NE(Si), where
Dj+1 is defined recursively by: fj∗Dj and D0 = D.
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Their composition f := fm ◦ · · · ◦ f1 : S → W is called an output of the D-MMP. If
DW is nef or dimW ≤ 1 we say that f is a result of the D-MMP.

For a general surface S and an arbitrary non-nef divisor D a D-MMP might not exist:
this boils down to whether D-negative extremal rays are contractible, something that we
have only proved for the very specific case of D = KS (see Exercise 3 for an example of a
non-contractible ray).

However, if D = KS +A, where A is an ample Q-divisor, then a D-MMP always exists:
indeed, if E is a D-negative curve, then

KS · E ≤ (KS +A) · E = D · E < 0,

and so the ray spanned by E is contractible by Theorem 3.3.

Theorem 5.2 (Cone Theorem in dimension 2). Let S be a smooth projective surface and
denote by NE(S) its Mori cone, i.e. the closure of the cone of curves. We then have

NE(S) = NE(S)KS≥0 +
∑

Rl,

where

NE(S)KS≥0 :=
{
z ∈ NE(S) |KS · z ≥ 0

}
and the Rl are half-lines such that Rl \ {0} are in NE(S)KS<0 and such that they are of the
form

Rl = NE(S) ∩ L⊥

for some nef Q-divisors L.
Moreover, the rays Rl are discrete in the half-space N1(S)KS<0 and for any ample

divisor A there are finitely many rays contained in the half-space N1(S)KS+A<0.

Corollary 5.3. Given an ample divisor A, there are finitely many (KS +A)-MMPs.

Lemma 5.4 (Negativity lemma). Let f : S → T be a birational morphism and denote by
E1, . . . , Ek the exceptional divisors of f . Suppose that(∑

aiEi

)
· Ej ≥ 0, for all 1 ≤ j ≤ k.

Then ai ≤ 0,∀i.

Corollary 5.5. If f : S → T is a birational morphism that is a (KS + A)-MMP and E is
a curve contracted by f , the f is a (KS +A+ E)-MMP as well.

Proof. By Lemma 5.4 there exists an f -exceptional curve Ei so that E · Ei ≤ 0. Then

(KS +A+ E) · Ei = (KS +A) · Ei + E · Ei < 0.

Ei being KS-negative is contractible and f factors though its contraction. Contracting
Ei and repeating the argument, we see that f is a sequence of (KS + A + E)-negative
contractions, i.e. a (KS +A+ E)-MMP. �

5.2. Ample and semiample models.

Definition 5.6. Let D ∈ N1(S) be divisor on S.
We say that D is semiample if a sufficiently large (and divisible) multiple nD of D (so

that nD is an integral divisor) is base point free.
A birational contraction f : S → T is called a semiample model of D if f∗D is

semiample and the divisor E := D − f∗f∗D is effective.
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A contraction f : S → W (non-necessarily birational) is called the ample model of D
if there exists an ample divisor A on W so that D = f∗A+E, where E is the fixed part of
D.

Remark 5.7.

(1) The ample model, if it exists, is actually unique (up to isomorphism): indeed if
f1 and f2 are two ample models for D then

f∗1A1 + E = D = f∗2A2 + E =⇒ f∗1A1 = f∗2A2;

in particular f1 and f2 contract the same curves and we conclude by Proposition
2.5. On the other hand semiample models are not unique in general (see Proposition
5.9).

(2) Let f : S → T be a semiample model for D. Since f∗D is semiample we can consider
the contraction φ : T →W associated to it. Then it is not hard to check that φ◦f is
the ample model of D (see [Lam25, 16.33 Lemma]). In particular, if f∗D is ample,
then the semiample and ample models coincide. Vice versa, if the ample model is
a birational morphism then it coincides with the semiample model.

(3) The definition of an ample model involves a pullback. Therefore (in general) it is
not a numerical notion. This means that two numerically equivalent divisors will
not (necessarily) have the same ample model.

While these two definitions might seem a bit out of the blue, we will only need them in
the cases when D is of the form KS + A, for some ample Q-divisor A. In that case they
take a form better suited to minimal model program.

Theorem 5.8 (Semiampleness theorem). Let D be a nef divisor of the form D = A+rKS,
with A ample and r a rational number. Then D is semiample (in particular D ≥ 0).

Proposition 5.9. Let D be a pseudoeffective divisor (see Definition 5.11) of the form
D = KS +A, for some ample Q-divisor A.

Then f : S → T is a semiample model for D if and only if f is the result of a D-MMP.

Proof. First note that if D is nef the result is trivial: by Theorem 5.8 D is semiample and
so f = id and the same is true for any D-MMP. So assume that D is not nef.

Suppose f is a semiample model. Then D = f∗f∗D + E and E is effective and f -
exceptional. By Lemma 5.4 there exists an exceptional curve Ei so that E · Ei < 0 and
so

D · Ei = f∗f∗D · Ei + E · Ei < 0.

Moreover, since D = KS + A, Ei is KS-negative and thus contractible. By considering
the contraction of Ei and applying this process again, we see that f is a composition of
D-negative contractions, i.e. an MMP. Moreover f∗D being semiample implies in particular
that it is nef, and so f is a result of an MMP.

Conversely suppose that f is the result of a D-MMP. In particular D is nef. Moreover

f∗D = f∗(KS +A) = KT +AT ,

where AT := f∗A is an ample divisor. Thus, by Theorem 5.8, f∗D is semiample. So we
only have to show that E = D − f∗f∗D ≥ 0. Write D as a limit of effective divisors Dn.
Then

Dn − f∗f∗Dn = En ≥ 0

where En is f -exceptional. Taking the limit we see that En → E and thus

E =
∑

aiEi,
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where ai ≥ 0 and Ei are f -exceptional, thus E is effective. �

Corollary 5.10. Let D be a pseudoeffective divisor (see Definition 5.11) of the form D =
KS +A, for some ample Q-divisor A.

Then D admits an ample model. Moreover, if D′ is another divisor of the form KS +A′

and D ≡ D′, then D and D′ have the same ample model.

Proof. By Proposition 5.9 we may get a semiample model f : S → T of D by running a
D-MMP. We then get the ample model of D by Remark 5.7(2).

As for the second part note that, any D-MMP is also a D′-MMP thus f is also a semi-
ample model for D′. Moreover the contractions associated to both f∗D and f∗D

′ contract
the same curves, namely those that are zero against them. We conclude by Proposition
2.5. �

5.3. Geography of ample models.

Definition 5.11. The effective cone is the cone in N1(S) spanned by effective classes.
It is denoted by Eff(S).

We define the pseudoeffective cone to be the closure of the effective cone. A divisor
is called pseudoeffective if its class is contained in the pseudoeffective cone.

Setup 5.12. In what follows we fix a smooth surface W , so that −KW is not pseudoeffec-
tive, and ample divisors Ai, . . . An. Denote by V ≤ N1(W ) the vector space spanned by the
Ai.

We define the cone

C = C(V ) :=

{
D = a0KW +

n∑
i=1

aiAi

∣∣∣∣∣ a0, . . . , an ≥ 0 and
D is pseudoeffective

}
⊂ N1

Q(W ).

This is a convex cone. In fact, since the pseudoeffective cone is strictly convex, C is also
strictly convex, i.e. it contains no lines.

By Corollary 5.10 every divisor in C admits an ample model, and this ample model
depends only on its numerical class. We say that two divisors are Mori equivalent if
they admit the same ample model (up to isomorphism on the target). A set of all classes
equivalent to a fixed class is called a Mori chamber. We denote by (Ai)i∈I the set of
Mori chambers and by fi : W → Si the corresponding ample model. We have a partition
I = IB t IF where i ∈ IB if dim(Si) = 2 and i ∈ IF otherwise. We will say that Ai is a
big chamber if i ∈ IB.

We now show that Mori chamber decomposition is finite.

Lemma 5.13. The Mori chamber decomposition is a finite partition of C.

Proof. First, since ampleness is an open condition (see Theorem 1.3), we may choose an
ample divisor A so that A′i := Ai −A is ample for all i = 1, . . . , n.

Let D = a0KW +
∑
aiAi ∈ C. Since KW is not pseudoeffective but D is, we have that

not all a1, . . . , an can be 0. So, up to scaling, we may assume that a1 + . . . + an = 1. We
then have that D = a0KW +A+

∑
aiA

′
i and so, for any curve E, we have

(a0KW +A+
∑

aiA
′
i) · E < 0 =⇒ (a0KW +A) · E < 0.

This shows, that for any D ∈ C, any D-MMP is also an (a0KW +A)-MMP and, by Corollary
5.3, there are finitely many such MMPs W → Si. From each Si there are finitely many
contractions, and therefore finitely many ample models. �
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We now want to study the closures of the Mori chambers.

Lemma 5.14. For i ∈ IB we have

Ai = {D ∈ C | fi∗D is ample and D − f∗i fi∗D ≥ 0},
Ai = {D ∈ C | fi∗D is nef and D − f∗i fi∗D ≥ 0}

= {D ∈ C | fi is a semiample model for D}.

Proof. The description of Ai follows from Remark 5.7(2). As for the description of the
closure let Dn be a sequence of divisors in Ai converging to D. Then fi∗Dn → fi∗D which
implies that fi∗D is nef. �

Using the description of Lemma 5.14 we can characterise non-big chambers. We first
need a preliminary result.

Proposition 5.15. Let D be a pseudoeffective divisor on a smooth surface S and assume
that ρ(S) > 1. Then D lies on the boundary of the pseudoeffective cone if and only if
D2 ≤ 0.

Proof. Suppose that D2 > 0. By Serre duality h2(S, nD) = h0(S,KS−nD). For sufficiently
large n KS−nD is negative against all curves on S, and so cannot be effective, i.e. h0(S,KS−
nD) = 0. Therefore, by Riemann Roch

h0(S, nD) ≥ n2D2 − nD ·KS

2
+ χ(OS)

which shows that, for n � 0, nD is effective. Fixing an ample divisor A, the previous
argument shows that the positive cone

P (S) :=
{
D ∈ N1(S) |D2 > 0 and D ·A > 0

}
lies inside the effective cone. Since P (S) is an open cone it does not intersect the boundary
of the pseudoeffective cone. �

Corollary 5.16. For an index i ∈ I we have

i ∈ IF ⇐⇒ Ai ⊂ ∂Eff(S).

Proof. Suppose that i ∈ IF and let D ∈ Ai. By Corollary 5.10 we may reach the ample
model of D by running a D-MMP f : S → T and considering the contraction T → Wi

given by f∗D. Since dim(Wi) < 2, by Remark 3.4(2), (f∗D)2 ≤ 0. However we have
D = f∗f∗D + E, and E2 < 0 by Theorem 3.2, thus

D2 = (f∗f∗D + E)2 = (f∗D)2 + E2 < (f∗D)2 ≤ 0

and so, by Proposition 5.15, D ∈ ∂Eff(S).
Conversely let D ∈ Ai and suppose that D ∈ ∂Eff(S). Assume, by contraposition, that

i ∈ IB and let fi : S →Wi be the ample model of D. In particular D = f∗i A+E, where E
is the fixed part of D and so

h0(S, nD) = h0(Wi, nA) ∼ O(n2).

This implies that nD lies in the interior of the pseudoeffective cone (see Exercise 11), a
contradiction. �

Lemma 5.17. Let i ∈ IB be an index with corresponding ample model fi : W → Si.

(1) Let D1, . . . , Dk be divisors so that fi is their common semiample model. Then fi is
the semiample model D for any non-negative linear combination D =

∑
riDi.
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(2) Let Di be a nef divisor on Si. Then fi is the semiample model of f∗i Di.
(3) Let E be a curve contracted by fi. Then fi is the semiample model of E.

In particular Ai is the intersection of C with the cone spanned by f∗i (Nef(Si)) and all

fi-exceptional curves, and so the chambers Ai are convex.
Suppose furthermore that Ai intersects the interior of C. Then dimAi = dimV .

Proof. For each 1 ≤ j ≤ k we may write Dj = f∗i (Hj) +Ej , where Hj is semiample and Ej
is fi-exceptional. We then have

D = f∗i

 k∑
j=1

rjHj

+
k∑
j=1

Ej ,

where
∑
rjHj is semiample and

∑
Ej is exceptional and effective. This is (1). As for (2)

and (3), they are immediate consequences of Definition 5.6.
As for the last part let D ∈ Ai be an element in the interior of C and A an ample divisor

in V . Then D + εA ∈ C for small ε. Recall that in this case the ample model fi : W → Si
coincides with the semiample model, which in turn is the output of a D-MMP. However,
for ε� 1, a curve is negative against D if and only if it is negative against D+ εA. Thus fi
is also a (D+ εA)-MMP, i.e. fi is the semiample model of D+ εA. Finally since ampleness
is an open condition, again for ε� 1, f∗(D + εA) is ample, i.e. D + εA ∈ Ai. �

Proposition 5.18. Let i ∈ IB with corresponding ample model fi : W → Si. If j ∈ I is an
index so that Ai∩Aj 6= ∅ then there exists a contraction fi,j : Si → Sj so that fj = fi,j ◦ fi.
Conversely, given a contraction fi,j : Si → Sj there exists an index j ∈ J with Ai ∩Aj 6= ∅.

Finally, in both cases, we have

ρ(Si/Sj) = dim
(
Ai
)
− dim

(
Ai ∩ Aj

)
.

Proof. For any D ∈ Ai∩Aj , by Lemma 5.14, fi is the semiample model of D; in particular
fi∗D is semiample. Let fi,j be the contraction associated to fi∗D. Then, by Remark 5.7(2)
fi,j ◦ fi is the ample model of D ∈ Aj . Therefore fj = fi,j ◦ fi.

For a contraction fi,j : Si → Sj define fj = fi,j ◦ fi and Aj to be the intersection of C
with the cone spanned by f∗j Nef(Sj) and the fj-exceptional divisors. Then

f∗j Amp(Sj) ∩ C ⊂ Ai ∩ Aj 6= ∅.

The intersection Ai ∩ Aj consists of nef divisors on Si that are fi,j-pullbacks of ample
divisors on Sj . Such divisors are precisely characterized by the fact that they are trivial

against fi,j-exceptional curves. Using the description of Ai of Lemma 5.17 we get that:

Ai ∩ Aj = 〈f∗i N,E |N ∈ Nef(Si) ∩N1(Si/Sj)
⊥, E is fi-exceptional〉

which shows that dim
(
Ai ∩ Aj

)
= dim

(
Ai
)
− ρ(Si/Sj) �

Remark 5.19.

(1) Proposition 5.18 gives us that the Mori chamber decomposition is in a sense “sat-
urated”; given two indices i ∈ IB and j ∈ I so that Ai ∩ Aj 6= ∅ and dim

(
Ai
)
−

dim
(
Ai ∩ Aj

)
= k, there exists chambers H1, . . . ,Hk−1 so that

dim
(
Hs
)
− dim

(
Hs ∩Hs−1

)
= 1

with Hk = Ai and H0 = Aj. This follows from the fact that K-negative curves can
contracted one by one (see Theorem 3.3).
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(2) In the setting of Proposition 5.18 we have the following dichotomy:

j ∈ IF ⇐⇒ Aj ⊂ Ai.

Indeed, if j ∈ IF , then Wj is a curve or a point. In both cases every fi,j-exceptional
divisor is also the fi,j-pullback of an ample divisor, and we conclude by Lemma
5.17. On the other hand assume j ∈ IB and let E be an fi,j-exceptional divisor.

Then, by Lemma 5.17, E ∈ Aj but E 6∈ Ai.

5.4. The proof. We start with an auxiliary lemma that will be useful later: let A1, . . . , An
be as in Setup 5.12 and denote by C′ the cone spanned by the Ai; define the visible
boundary of C as follows:

∂+C :=

{
D ∈ ∂C

∣∣∣∣ D = ∂C ∩ [KW , D
◦],

for some D◦ ∈ int C′
}
⊂ ∂C,

where [KW , D
◦] denotes the line segment between KW and A.

Lemma 5.20. The visible boundary consists entirely of divisors lying in the boundary of
Eff(W ), is connected and has dimension n− 1

Proof. By definition, for any D ∈ ∂+C, we have

D = tKW + (1− t)A, t ∈ [0, 1),

for some A =
∑
aiAi, with all ai > 0. In particular

D = tKW +
∑

(1− t)aiAi,

where t, (1− t)a1, . . . , (1− t)an > 0. Thus, by definition of C and since D ∈ C, D ∈ Eff(W ).
As for the last part, by Setup 5.12, KW is not in C and so, for every A ∈ int C′ ⊂ C, the

segment [KW , A] intersects ∂C in a unique point. This gives us a continuous map

C′ → ∂+C
A 7→ ∂C ∩ [KW , A].

The former being connected shows that ∂+C is connected of dimension precisely dim C′−1 =
n− 1. �

Remark 5.21. In the particular case when −KW ∈ C′ then ∂+C = ∂C. However it could
very well be that ∂+C ( ∂C.

We now return to the setup of the Sarkisov program. Let η1 : S1 → B1 and η2 : S2 → B2

be two Mori fiber spaces and g : S1 99K S2 be a birational map. Let

(4)

W
f1

}}
f2

!!
S1

η1 ��

g // S2
η2��

B1 B2

be a resolution of g.
Note that KW is not effective, otherwise KSi = fi∗KW would also be effective.

Lemma 5.22. Let fi and ηi be as in (4). We may choose A1, . . . , An so that there exists
a 2-dimensional affine subspace V2 ≤ N1(W ) with the properties:
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• V2 intersects transversally5 all Mori chambers Ai of C;
• dim (Afi ∩ V2) = 2 and dim (Aηi◦fi ∩ V2) = 1;
• (Aηi◦fi ∩ V2) ∩ ∂+C 6= ∅.

Proof. Since fi is the output of an MMP, there exists an ample divisor Hi so the fi is a
(KW + Hi)-MMP and, by Proposition 5.9 and Remark 5.7(2), fi is the ample model of
KW +Hi. Choose A1 = H1, A2 = H2 and A3, . . . , An arbitrary so that dim(V ) ≥ 3. Then,
by our choice, there exist chambers Af1 and Af2 in C, whose corresponding ample models
are f1 and f2 respectively.

Choose Di = KW +Ai. Let V2 be the unique 2-dimensional affine subspace spanned by
KW , A1 and A2, i.e.

V2 = 〈A1, A2〉+KW .

Then, since the Mori chamber decomposition is finite by Lemma 5.13, only a finite num-
ber of conditions need to be satisfied for an affine subspace to intersect a chamber non-
transversally, that is to contain or be contained in a chamber. Thus, up to perturbing
A1 and A2 by some divisor in V , we may assume that V2 intersects all chambers of C
transversally. Since V2 intersects both the interiors of Af1 and Af2 , their intersection is
2-dimensional by Lemma 5.17.

By moving the Di close to Aηi◦fi we may assume that the segment [KW , Ai] ⊂ V2
intersects C at a point in the relative interior of Aηi◦fi . This finally shows both that
Aηi◦fi ∩ V2 is 1-dimensional and that (Aηi◦fi ∩ V2) ∩ ∂+C 6= ∅. �

Setup 5.23. For the rest of this section we adopt the notation of [HM13, Section 3]: let V2
be as in Lemma 5.22 and Θ ∈ C be a point that lies in the boundary ∂Eff(W ); enumerate by
T0, . . . , Tk the closures of the big chambers A0, . . . ,Ak of dimension 2 intersecting V and
containing Θ in their closures; by Remark 5.19, and up to reordering, we may assume that
the intersections O0 and O1 of T0 and Tk with ∂Eff(W ) are one dimensional; similarly we
may assume that Oi := Ti−1 ∩ Ti is non-empty, thus 1 dimensional. All in all we have the
following picture:

Denote by fi : W → Si the ample model corresponding to the chamber Ai, by W → B1 and
W → Bk the ample models corresponding to elements in the relative interior of O0 and Ok
respectively, and by W → R the ample model of Θ.

5that is V2 does not contain and is not contained in intersections of the the form
⋂
j∈J

Aj
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Lemma 5.24. In Setup 5.23, for all 0 < i < k we have that

Oi ⊂ Ti or Oi ⊂ Ti+1.

Further more k ≤ 3.

Proof. For 0 < i < k, let D be a divisor in the relative interior of Oi and let Aj be a
chamber containing D. Since D is in the interior of Eff(W ), fj : W → Sj is birational.

Then by Lemma 5.17 dimAj = 2 and, by our notation, Aj = Ti or Aj = Ti+1.
As for the second part, suppose that k > 3. Thus the relative interior of O2 is contained,

without loss of generality, in A2. By Proposition 5.18 there exist (non-trivial) morphisms
η2 : S2 → R, η3 : S3 → R and f2,3 : S2 → S3. Moreover we have

ρ(S2)− ρ(R) = 2 = ρ(S3)− ρ(R) =⇒ ρ(S2) = ρ(S3),

ρ(S2)− 1 = ρ(S3),

which gives a contradiction. �

Note that Lemma 5.24 is exclusive to dimension 2: in higher dimensions there could be
more chambers.

Lemma 5.25. The morphisms η1 : S1 → B1 and η2 : Sk → Bk induced by Proposition 5.18,
are Mori fiber spaces.

Proof. First note that, since elements in the relative interior of O0 and Ok lie on the
boundary of Eff(W ) their corresponding ample models B1 and Bk are lower dimensional.
In contrast, the ample models W → S1 and W → Bk are birational. Thus the morphisms
induced by Proposition 5.18 η1 : S1 → B1 and η2 : S2 → B2 are fibrations, with ρ(Si) −
ρ(Bi) = 1.

Finally let Hi be an ample divisor on Bi so that η∗i (Bi) = KSi + Di for some effective
Di. Then, since Di is effective, it can’t be negative against all fibers of ηi. Thus ηi is
KSi-negative, and thus ηi are Mori fiber spaces. �

Proposition 5.26. In the setup 5.23, let A be Mori chamber containing Θ. Assume that
there exists at least one i so that dim Ti − dim(Ti ∩ A) = 2.

Then there exists a Sarkisov link between the Mori fiber spaces η1 : S1 → B1 and ηk : Sk →
Bk of Lemma 5.25.

Proof. More precisely, taking cases in the variables of Lemma 5.24, we will show that we
have a link of:

Type I when k = 2 and O1 ⊂ A1; Type III when k = 2 and O1 ⊂ A2;
Type II when k = 3; Type IV when k = 1.

Case: k = 2 and O1 ⊂ A1

Then, by Proposition 5.18, have a diagram

S2
��xx

S1
��

B2

tt

B1

��
R.

By the same proposition we have ρ(S2) − ρ(R) ≤ 2 and, looking at the left hand side of
the diagram we get ρ(S2) − ρ(B1) = 2. This implies that B1 → R is an isomorphism, i.e.
we get a diagram similar to the Type I of Definition 4.21.
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We now use the classification of Mori fiber spaces of Theorem 4.2 to identify the varieties
appearing in the diagram: since, by Lemma 5.25, both Si → Bi are Mori fiber spaces and,
by Proposition 5.18, ρ(S2) − ρ(S1) = 1, Theorem 4.2 implies that S1 → B1 is P2 → pt.
Consequently, since S2 → P2 is the contraction of a (−1)-curve, its inverse is a blowup and
so S2 → B2 is F1 → P1.
Case: k = 3

In this case, using Lemma 5.24 and Proposition 5.18, we get that

ρ(S2) 6= ρ(S1), ρ(S2)− ρ(R) = 2 and ρ(S1)− ρ(R) =

{
1, if Θ ∈ O0;
2, if Θ 6∈ O0.

For all three to be true at the same time we need that Θ ∈ O0 and ρ(S2)− ρ(S1) = 1, the
former implying that B1 = R and the latter being equivalent to saying that O1 ⊂ A1. The
same analysis on the right hand side gives us a diagram

S2
}} ""

S1
��

S3
��

B1 R B3.

Once more we will use Theorem 4.2 so deduce that this is a Type II of Definition 4.21.
We only need to show that dim(R) = 1. Assume otherwise, then S1 = S3 = P2 and
consequently S2 ∼= F1. However that is not possible, since F1 has a unique morphism to P2.

Case: k = 2 and O1 ⊂ A2

This is exactly the analysis of the first case but mirrored.

Case: k = 1
Since, by assumption, dim T1−dimA = 2 but dim T1−Oi = 1 we get two distinct morphisms
S1 → B1 and S1 → B2 that are Mori fiber spaces. Note that ρ(S1) 6= 1 otherwise there
would only be a unique fibration. Therefore ρ(S) = 2 and ρ(Bi) = 1. This gives us a
diagram similar to the one of Type IV of Definition 4.21. Moreover, by Execsice 5.27, our
diagram is exactly the one of Definition 4.21. �

Exercise 5.27. Let S be a surface of Picard rank ρ(S) = 2 with two fibrations ηi : S → Ci,
i = 1, 2, i.e. dim(Ci) = 1 and ηi have connected fibers.

(1) Show that S ∼= C1 × C2. (Hint: look at the two projection formulas; show that g(fi) =

g(Cj) and conclude that fi · fj = 1.)

(2) Assume furthermore that both ηi are Mori fibers spaces. Show that S ∼= P1 × P1.

We now have all the tools to prove the Sarkisov program

Proof of Theorem 4.22. Let η1 : S1 → B1 and η2 : S2 → B2 be two Mori fiber spaces,
g : S1 99K S2 a birational map and choose a resolution as in (4). Choose ample divisors
A1, . . . , An and a 2-dimensional affine subspace V2 ≤ N1(W ) satisfying the assumptions of
Lemma 5.22.

Then P := C ∩ V2 is a plane polytope. Consider its visible boundary ∂+P := ∂+C ∩ V2
and choose two points Θ1,Θ2 ∈ ∂+P ∩ Aηi◦fi . Since ∂+P is connected, there is a path
between Θ1 and Θ2. On this path there exists finitely many points Θi as in Setup 5.23
since, by Lemma 5.13, there are only finitely many chambers in the decomposition of P.
A subset of these points will satisfy the extra condition of Proposition 5.26 so that each of
these points corresponds to a Sakrisov link. Traversing the path between Θ1 and Θ2 gives
us the desired decomposition. �
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6. Application: generators of Cr2(C)

6.1. Decomposition of the standard quadratic transformation.

Definition 6.1 (Proper quadratic transformations). The birational map

τ : P2 99K P2

(x0 : x1 : x2) 7→
(

1
x0

: 1
x1

: 1
x2

)
= (x1x2, x0x2, x0x1)

is called the standard quadratic transformation.
Let p1, p2, p3 ∈ P2 be non collinear points and let α ∈ Aut(P2) so that α(pi) = ei,

where ei are the coordinate points. The composition τ ◦ α is called a (proper) quadratic
transformation centred at p1, p2, p3.

Remark 6.2.

(1) τ is an involution, i.e. τ2 = id;
(2) τ is not defined at the coordinate points ei;
(3) τ contracts precisely the three lines {xi = 0}: indeed it suffices to look at where τ−1

is not defined; since τ−1 = τ the contracted curves are exactly the preimages of the
coordinate points.

(4) up to an automorphism of the target, the inverse of a proper quadratic transforma-
tion is a proper quadratic transformation: indeed (τ ◦ α)−1 = α−1 ◦ τ .

(5) As the name suggest, in general, a quadratic transformation is a birational self-
map of P2 given by polynomials of degree 2. Proper refers to the fact that all the
base points are proper points of P2. Not all quadratic transformations are proper
however, e.g.

P2 99K P2

(x0 : x1 : x2) 7→ (x22 : x0x1 : x0x2)

is a birational involution with base points (1 : 0 : 0) and (0 : 1 : 0); the latter has
multiplicity two and should be though of as two points: one infinitely near the other.

(6) If we choose as base points three collinear points p1, p2, p3 then the resulting qua-
dratic map is an automorphism: indeed the map has to be given by a linear subsys-
tem V of H0(P2,OP2(2)) whose elements all pass thought the pi; up to a change of
coordinates

V =
〈
x20, x0x1, x0x2

〉
,

and the resulting map is trivial, after clearing denominators.

Proposition 6.3. The standard quadratic transformation τ : P2 99K P2 admits the follow-
ing decomposition into Sarkisov links:

P2 Type I // F1
Type II // F0

Type II // F1
Type III // P2.

Proof. The proof of the Sarkisov program of section 5.4 is quite theoretical and not very
apt for explicit calculations. However the standard quadratic transformation is resolved by

W
r
}}

s
!!

P2 τ // P2

where both r and s are the blowup of P2 along the coordinate points. In particular W is a
toric variety, which makes such calculations possible.

First note that −KW is ample and so, by Theorem 5.2, the effective cone is finitely
generated. Choose a set of generators Di, . . . , Dk and take ri � 0 so that the divisors
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Ai = Di − riKW are ample. Then in the Setup 5.12 C(V ) coincides with the cone Eff(W ):
indeed, clearly C(V ) ⊂ Eff(W ); if D ∈ Eff(W ) then

D =
∑

aiDi =
(∑

airi

)
KW +

∑
aiAi ∈ C(V ).

For toric varieties the decomposition of the cone Eff(W ) into Mori chambers can be com-
puted by the combinatorics of W . Here W you can find the code, together with its outputs,
for the computational algebra software Singular W used to compute the decomposition in
our case.

Equivalently, but more cleanly, one can obtain the following: picture

by slicing the polytope SARKIREL - Case (1 1 1) W with a plane parallel to the base. In
any case following the proof of subsection 5.4 we obtain the desired decomposition. �

Proposition 6.4 (Noether’s relations). Let φ : P2 99K P2 be a birational map and

S
r
~~

s
  

P2 // P2

be a resolution so that r and s are compositions of blowups. Suppose that φ is given by a
linear system V ≤ H0(P2,OP2(d)) so that

s∗L = dr∗L−m1Ek − . . .−mkEk,

where Ei are r-exceptional curves.
Then we have the relations

d2 −
∑

m2
i = 1 and 3d−

∑
mi = 3.

Proof. Let C be a general element in V so that its strict transform C̃ on S is equivalent to
dr∗L−m1Ek − . . .−mkEk, i.e. s∗L ∼ C̃. However, by Proposition 1.7, the intersection of
C with C and −KS goes down at each step by m2

i and mi respectively. Thus

1 = (s∗L)2 = C̃2 = d2 −
∑

m2
i and 3 = −KP2 · L = −KS · s∗L = 3d−

∑
mi,

which are the first and second formulas respectively. �

Lemma 6.5. Let σ : P2 99K P2 be a birational map with 3 proper base points p1, p2, p3 in
general position. Then σ is a quadratic transformation centred at p1, p2, p3.

Proof. By Lemma 6.4 we have

3d−
∑

mi = 3 and d2 −
∑

m2
i = 1.

By the Cauchy-Schwarz inequality we have(∑
mi

)2
≤ 3

∑
m2
i =⇒ (3d− 3)2 ≤ 3d2 − 3 ⇐⇒ 6d2 − 18d+ 12 = 6(d− 1)(d− 2) ≤ 0

from which we get d = 2 and consequently m1 = m2 = m3 = 1. �

https://s-zikas.github.io/site/teaching/surfacesAndSarkisov/singularCode-DecompositionOfStadQuadratic.txt
https://www.singular.uni-kl.de/index.php/singular-manual.html
https://www.math.univ-toulouse.fr/~slamy/sarkirel/sarkirel_interactive.html
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Remark 6.6. Let σ : P2 99K F1 99K F0 99K F1 −→ P2 be a composition of Sarkisov links.
Since each of the first three links in completely determined by its unique base point and
the fourth one is independed of choices, the whole composition is determined by the three
base points; let p1, p2, p3 be their preimages in P2. Then if the pi are proper (not infinitely
near) and in general position then, by Lemma 6.5, σ is a quadratic transformation centred
at p1, p2, p3.

6.2. Elementary transformations of Hirzebruch surfaces. In what follows we will
use the GIT quotient notation for Hirzebruch surfaces introduced in subsection 4.2.

Definition 6.7. The birational maps

Fn
ρ−n−→ Fn−1 Fn

ρ+n−1←− Fn−1
(x0 : x1;u0 : u1) 7→ (x0 : u1x1;u0 : u1) (v1y0 : y1; v0 : v1) ←[ (y0 : y1; v0 : v1)
{u1 = 0} 7→ (1 : 0 ; 1 : 0) (0 : 1 ; 1 : 0) ←[ {v1 = 0}

are inverse to one another and are called standard elementary transformations of
Hirzebruch surfaces.

Remark 6.8.

(1) The birational map ρ−n is not defined at the point (0 : 1 ; 1 : 0) = {x0 = u1 = 0}
which lies on the positive section σ+ = {x0 = 0}; Conversely ρ+n is not defined at the
point (1 : 0 ; 1 : 0) = {x1 = u1 = 0} which lies on the negative section σ = {x1 = 0}.

(2) ρ±n are elementary transformations in the sense of Definition 4.21.

Proposition 6.9. Let p0, p1 ∈ Fn be two points lying on the same section of Fn. Then

(1) if p0, p1 ∈ s 6= σ there exists an automorphism α ∈ Aut(Fn) so that α(p0) = (0 :
1 ; 0 : 1) and α(p1) = (0 : 1 ; 1 : 0);

(2) if p0, p1 ∈ σ there exists an automorphism α ∈ Aut(Fn) so that α(p0) = (1 : 0 ; 0 : 1)
and α(p1) = (1 : 0 ; 1 : 0).

Proof. We will only treat (1) as (2) is similar. The points p0, p1 ∈ σ+ are uniquely deter-
mined as the section σ+ with two fibers f0 and f1. Thus it suffices to show that there exists
an automorphism α that sends σ to {x0 = 0} and fi to {ui = 0}.

Let fi be the fiber over (µi,0, µi,1) ∈ P1. Then the matrix µ := (µi,j)
−1 ∈ PGL2(k) maps

the two points to (1, 0) and (0, 1). Then

α1 : Fn → Fn
(x0 : x1 ;u0 : u1) 7→ (x0 : x1 ;µ(u1 : u0))

maps fi to {ui = 0}. Let s1 := α1(s) so that, there exists f ∈ k[u0, u1]n with, s1 =
{x0 + f(u0, u1)x1}. Then

α2 : Fn → Fn
(x0 : x1 ;u0 : u1) 7→ (x0 − f(u0, u1)x1 : x1 ;u0 : u1)

which maps σ to {x0 = 0} and {ui = 0} to itself. Then α := α2 ◦ α1 gives the desired
automorphism. �

Corollary 6.10.

(1) Let φ± : Fn 99K Fn±1 be an elementary transformation. Then there exists α ∈
Aut(Fn) so that φ± = ρ±n ◦ α.
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(2) Let χ− ◦ χ+ : Fn 99K Fn be a composition of 2 elementary transformations. Then
there exists α, β ∈ Aut(Fn) and a commutative diagram

Fn+1

&&

χ−

$$
Fn

χ+ ..

α // Fn
88

&&
Fn

β // Fn,

Fn−1

88

so that Fk 99K Fk±1 are standard elementary transformations.
(3) Let χ1 ◦ χ2 : F0 99K F0 be a composition of 2 elementary transformations. Then

there exists α, β ∈ Aut(F0) and a commutative diagram

F1

%%

χ2

##
F0

χ1 --

χ2
11

α // F0

99

%%
F0

β // F0,

F1 χ1

;;99

so that F0 99K F1 are standard elementary transformations.

Proof. Note that by subsection 4.4 an elementary transformation is determined solely by its
base point. By Proposition 6.9 we may move the base point p of φ± to either (0, 1, 1, 0) or
(1, 0, 1, 0) and then preform the corresponding standard elementary transformation. This
is (1).

As for (2) and (3) we may compose with automorphisms α, β to turn χ+ and χ− into
standard elementary transformations. Then it suffices to notice that standard elementary
transformations commute with one another. �

Theorem 6.11 (Noether-Castelnuovo). The Cremona group Cr2(C) is generated by PGL3(C)
and the standard quadratic transformation.

Proof. Let φ ∈ Cr2(C) and let S(φ) be a decomposition into Sarkisov links. By applying
Corollary 6.10(2) a number of times, we may assume that the only varieties appearing
in the decomposition S(φ) are P2, F0 and F1. Whenever a composition of elementary
transformations of the form F0 99K F1 99K F0 appears, we may trivially decompose it as

F0 99K F1 → P2 = P2 ← F1 99K F0.

Finally, by Exercise 5, whenever we have a Type IV link we may decompose it as

F0 99K F1 → P2 → P2 99K F1 99K F0.

Up to preforming the aforementioned modifications on S(φ) it becomes a composition of
repeating blocks of

(Q) P2 99K F1 99K F0 99K F1 → P2.

Thus it suffices to show that birational maps that admit such a decomposition are compo-
sitions of proper quadratic transformations.

A composition of links as in (Q) is determined completely by the base points of the first
three links; consider their images p1, p2, p3 in P2. Note that not all three can be infinitely
near as, in that case, the second link would be F1 99K F2. Thus there are three cases:

(1) all three are proper and in general position;
(2) all three are proper points but lie on a line;
(3) p3 is infinitely near p2,
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the first case corresponding to a proper quadratic transformation by Lemma 6.5 and the
second to an automorphism by Remark 6.2(6). Thus we are left with the third case.
Choose a fourth point q so that p1, p2, q are not collinear. Then we may consider the
following diagram

P2

F1

88

P2

ρ ++

σ1 ,,

πp1 // F1

εp2 // F0

εp3 88

εq &&

F0

εqff

F1

xx

εp3

88

P2 P2

ff

σ2

ZZ

which commutes by Corollary 6.10(3) and thus decomposes the initial map ρ as a compo-
sition of the two proper quadratic transformations σ1 and σ2. �

Exercises

Exercise 1 (Characterization of (−1)-curves).

(1) Let C ⊂ S be an irreducible and reduced curve. Use the tools introduced in the
beginning of section 2 to prove that

h1(C,OC) =
(KS + C) · C

2
+ 1.

(2) Prove that h1(C,OC) = 0 then C ∼= P1. (Hint: see [Mat02, Exercise 1-1-5])

(3) Prove Proposition 3.1.

Exercise 2 (Factorization of birational maps). Let r : W → T be a birational contraction
between smooth surfaces, that is not an isomorphism.

(1) Let E be a curve contracted by r. Use Lemma 5.4 to show that KW · E,E2 < 0.
Deduce that E is a (−1)-curve.

(2) Let W →W1 be the contraction of E. Show that r factors though it, i.e.

W //

r

((
W1 r1

// T

(3) Argue that, by replacing r with r1 and repeating the argument, this process eventually
terminates and gives a factorization of r into inverses of blowups.

(4) Deduce that any birational map between smooth surfaces factors into a series of
blowups followed by a series of inverses of blowups.

Exercise 3 (An example of a non-contractible extremal ray).

Reminder - cohomology of line bundles on Pn: For any k ∈ Z we have

hi(Pn,OPn(k)) = 0,

for 0 < i < n. Moreover

h0(Pn,OPn(k)) = hn(Pn,OPn(−n− 1− k)) =

(
n+ k

k

)
,

where
(
n+k
k

)
= 0 for k < 0.
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Fact: There exist smooth curves C ⊂ P3 of genus and degree (5, 8). For every such
curve C, there exists a smooth surface S of degree 5 and Picard rank ρ(S) = 2, so
that N1(S) is spanned (as a vector space) by H and C.

Let C ⊂ S ⊂ P3 be as above.

(1) Prove that h1(S,OS) = 0, h2(S,OS) = 4 and KS = H|S.
(2) Using the arithmetic genus formula of Exercise 1(1) prove that C2 = 0. Use Propo-

sition 5.15 to deduce that C spans an extremal ray of NE(S).
(3) Assume that KC − H|C ∼ 0; this is a speciality condition, i.e. a general curve

C ⊂ P3 does not satisfy this property. Use the same techniques as in the proof of
Theorem 2.2 to prove that H0(S,C) = 2; Deduce that OS(C) is base point free.
(Hint: use adjunction.)

(4) Assume that n(KC −H|C) 6∼ 0 for any n > 0. Prove that H0(S, nC) = 1 for any
n > 0. Deduce that OS(nC) contains C in its base locus for any n > 0, and thus
that OS(C) is not semiample. (Hint: on a curve C there is only one divisor D of degree

0 with h0(C,D) 6= 0.)

(5) Show that if D is a nef divisor with D ·C = 0 then D = nC for some n ≥ 0. Deduce
that, in the setting of (4), the extremal subcone R+C ≤ NE(S) is not contractible.

Exercise 4 (The Cayley-Bacharach theorem).

(1) Prove that there exists a unique line/conic though 2/5 points in general position in
P2.

(2) Compare the previous numbers with h0(P2,OP2(1)) and h0(P2,OP2(2)). Interpret
(1) as the points imposing linearly independent conditions.

(3) Let S8 → P2 be the blowup of P2 along 8 points in general position, and let D8

be the strict transform of a cubic though all points. Compute that h0(S8, D8) = 2.
(Hint: D8 is a very special divisor on S8. . . )

(4) Deduce the Cayley-Bacharach theorem: every cubic that passes through a given set
of 8 points, also passes though a ninth point p which only depends on the 8 other
points.

(5) Let S9 → P2 be the blowup of P2 along 9 points in general position and let D9 be the
strict transform of a cubic though all points Show that h0(S9, D9) = 1. Deduce that
the points impose linearly independent conditions. (Hint: you will need to use (4).)

Sidenote: Asking the same questions for linear systems of higher degree and with more
points (and/or points with higher multiplicity) becomes trickier and trickier, as vanishing
theorems fail more and more. In fact this it the content of the, still open, Harbourne-
Hirschowitz conjecture.

Exercise 5 (Factorization of P2 99K P1 × P1).

(1) Show that there are no morphisms from P2 → P1.
(2) Choose your two favourite points p1, p2 on P2; write two rational maps fi : P2 99K P1

not defined at the pi.
(3) Show that fi is resolved by blowing up pi; Deduce that the blowup S → P2 at the

two points pi admits a morphism to P1 × P1.
(4) What does this morphism contract? Explain it: in term of equations; in the language

of section 2; in the language of elementary transformations.
(5) Let α ∈ Aut(P2) be so that α(pi) = pj. Show that the induced birational map

P1 × P1 L99 P2 α−→ P2 99K P1 × P1,

is the automorphism of P1 × P1 exchanging the factors.
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Exercise 6 (A surface with infinitely many (−1)-curves). Let P = {p1, . . . , pk} ∈ P2 be a
k-tuple of points so that no three are collinear. A proper quadratic transformation χ (see
Definition 6.1) is called admissible if its base locus is a triplet of points in P . Let χ be
such a transformation and assume, up to reordering, that its base points are p1, p2, p3; we
then obtain a new k-tuple as follows

{p1, p2, p3, p4 . . . , pk}
χ7→ χ(P ) := {q1, q2, q3, p4 . . . , pk},

where q1, q2, q3 are the base points of χ−1; this defines an equivalence relation among k-
tuples of points. We say that p1, . . . , pk are in general position if for any equivalent
k-tuple of points, no three are collinear.

Fact: The set of k-tuples of points in general position forms an open and dense
subset of Symk(P2). (see [Har77, pg. 409, ex. 4.15]).

In what follows we will denote by LP (d;m1, . . . ,mk) the linear system of curves of degree
d passing with multiplicity mi from the point pi.

(1) Let fP : S → P2 be the blowup of P2 along p1, . . . , pk, and χ : P2 99K P2 be an
admissible transformation. Show that the induced map χ ◦ fP is a morphism.

(2) Let χ be an admissible quadratic transformation with base locus pk1 , pk2 , pk3; up to
reordering assume that k1, k2, k3 = 1, 2, 3. Let (r, s) : W → P2 × P2 be a resolution

of χ. Let C ∈ LP (d;m1, . . . ,mk) be a curve and χ(C) := s(C̃), where C̃ denotes
the strict transform of C under r. Show that

χ(C) ∈ LQ
(
d′;m′1,m

′
2,m

′
3,m4 . . . ,mk

)
.

where d′ = 2d−m1 −m2 −m3 and m′i = d−m1 −m2 −m3 +mi.
(3) When r = 6, show that this new definition coincides with the one we used in sub-

section 4.2, i.e. a sextuple of points are in general position if and only if no three
lie on a line and no six lie on a conic.

(4) Let P = {p1, . . . , p9} be a 9-tuple of points in general position and L ∈ LP (1; 1, 1, 0, . . . , 0),
i.e. a line though two points. Show that for any d, there exists a finite sequence of
admissible quadratic transformations ψk = χ1◦· · ·◦χk so that degψk(L) > d. (Hint:

use induction; note that all ψi(C) have the same strict transform Ĉ on S and −KS ·Ĉ = 1.)

(5) Let S → P2 be the blowup of P2 along nine points in general position. Use (4) and
Proposition 2.5 to deduce that NE(S) is not finitely generated.

Sidenote: The code found here W for the computer algebra software Macaulay2 W verifies
the results of (4): given an integer d it will apply appropriate quadratic transformations to
the line though two points, until it transforms it into a curve of degree greater that d.

Exercise 7 (Blowup of n points on a conic). Let p1, . . . , pn ∈ P2 be n points on a reduced
(but possibly singular or even reducible) conic Γ̌ and let f : S → P2 be the blowup along the
pi. Assume that n ≥ 7. Denote by Γ the strict transform of Γ̌.

(1) Compute a basis for H0(S,−KS). (Hint: vanishing theorems will fail here.)

(2) Let C ⊂ S be a curve with C2 ≤ 0. Show that −KS · C ≤ 2.
(3) Let C be as in (2) and assume that C 6⊂ Γ. Show that deg f(C) ≤ 2. Deduce that

C is the strict transform of one of the following types of curves: a line though two
points, a line thought a point, a conic though four points.

(4) Among the three classes of curves in (3) show that only the strict transforms li,j
of lines though two points span extremal rays of NE(S). (First show that li,j span

extremal rays; then write the other two classes as sums of other extremal curves.)

(5) Deduce that NE(S) is spanned by precisely n +
(
n
2

)
+ 1 extremal rays. For n = 9,

compare with Exercise 6.

https://s-zikas.github.io/site/teaching/surfacesAndSarkisov/M2Code-quadraticTransformations.txt
https://www.unimelb-macaulay2.cloud.edu.au/#home
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Exercise 8 (Uniruled varieties are covered by rational curves).

(1) Let P1 → C be a dominant morphism to a (possibly singular) curve C. Show that
C is rational. (Hint: Use the universal propery of the normalization.)

Let S be a uniruled surface. Then there exists a generically finite rational map C × P1

to S, where C is a smooth curve of genus g(C) ≥ 1. Let W → (C ×P1)×S be a resolution
and consider the Stein factorization of W → S to obtain the diagram

W
s //

xx
T
��

C × P1

��

// S.

C

(2) Observe that every fiber of π : W → C is a union of P1s. Moreover these are the
only rational curves on W .

(3) Use Theorem 3.2 to show that, for every point p ∈ C, there exists a component of
π−1(p) that is not contracted by W → T .

(4) Deduce that T and, consequently, S are covered by rational curves.

Exercise 9 (Bend-and-Break).

Fact - space of morphisms from a curve: Let X be a smooth projective variety and
i : C → X a smooth curve. There is a scheme Mor(C,X) parametrizing morphisms
from C → X. Moreover

dim[i] Mor(C,X) ≥ −KX · i∗C + (1− g(C)) dim(X),

where dim[i] Mor(C,X) denotes the dimension of Mor(C,X) at the point corre-
sponding to i.
Choose p ∈ C. The locus Mor(C,X; i|p0) of morphisms f : C → X with f(p0) =
i(p0) is a closed subscheme with

dim[i] Mor(C,X; i|p0) ≥ −KX · i∗C + (1− g(C)− 1) dim(X).

(see [Deb01, Section 2.3] for more details.)

Let X be a smooth projective variety i : C → X a smooth, non-rational curve. Assume that
dim[i] Mor(C,X; i|p0) ≥ 1, and let T ⊂ Mor(C,X; i|p0) be a curve. Let T → T be a smooth

compactification of T . Consider the rational map ev : C × T 99K X as the extension of

ev : C × T → X
(p, f) 7→ f(p).

Assume that ev is defined at every point of the form (p0, f).

(1) Choose open affine neighbourhoods U ⊂ C and V ⊂ X so that ev|U : U × T → V is
a morphism. Show that f(U) = i(U) for every f ∈ T . Conclude that f(C) = i(C)
for all f ∈ T . (Hint: For every c ∈ U , {c} × T is compact.)

(2) Show that, for all f ∈ T , f : C → f(C) is an isomorphism.
(3) Observe that{

i−1 ◦ f |f ∈ T
}
⊂ Aut(C; p0) :=

{
α ∈ Aut(C) |α(p0) = p0

}
and derive a contradiction.

Therefore ev is not defined at a point (p0, t0). Let (r, s) : W → (C×T )×X be a resolution
of ev.

(4) Observe that r−1(p0, t0) is a union of P1s.
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(5) Argue similarly to the proof of Proposition 3.12 to show that there exists a compo-
nent of r−1(p0, t0) that is not contracted by s.

(6) Deduce that there exists a rational curve in X that passes though the point i(c0).

Let X ⊂ Pn+1 be a quartic n-fold and C ⊂ X be a general smooth plane section, i.e.
C = X ∩H1 ∩ · · · ∩Hn−1, where Hi ⊂ Pn+1 are general hyperplanes.

(7) Compute that g(C) = 3 and −KX ·C = 4(n− 2). (Hint: C is actually a plane curve.)

(8) Show that, if n ≥ 9, X is covered by rational curves.

Sidenote: In fact, all varieties with ample anti-canonical divisor (in particular quartic
hypersurfaces of dimension greater or equal to three) are covered by rational curves. This
result uses Bend-and-Break, but one has to use other techniques, passing thought positive
characteristic and using the Frobenious morphism, to produce families of curves that deform
with a fixed point. See [Deb01, Chapter 3] for a comprehensive treatment.

Exercise 10 (Cubic n-folds are covered by lines).

(1) Let S ⊂ P3 be a cubic surface and p ∈ S a singular point. Show that there exists a
line l ⊂ S though p. (Hint: Use Proposition 4.12 to find another line l′; consider a plane

containing l′ though p.)

(2) Let X ⊂ P4 be a cubic threefold and p a point. Show that there is a line l ⊂ X
though p. (Hint: if p is a smooth point consider S := X ∩ Tp(X).)

(3) Show that a cubic n-fold X ⊂ Pn+1 is covered by lines.

Exercise 11 (Kodaira’s Lemma).

Reminder - Serre’s criterion for ampleness: A divisor A′ on X is ample if and

only if for any divisor D on S, D + nA′ is (very) ample for n� 0.

Let D be any divisor on a smooth projective variety X. Define its Iitaka dimension
κ(D) as follows:

• if h0(X,nD) = 0 for all n ∈ N, then κ(D) = −∞;
• otherwise κ(D) is the integer so that there exist constants r,R > 0 and n0 ∈ N with

r · nκ(D) ≤ h0(X,nD) ≤ R · nκ(D),

for every n ≥ n0, i.e. the rate of growth of the sections of D.

We say that a divisor D is big if κ(D) = dim(X).

(1) Use Serre’s criterion for ampleness to deduce that for every divisor D, there exists
a very ample divisor A with κ(D) ≤ κ(A).

(2) Let D be a semiample divisor and φ the map defined by a sufficiently large multiple
of D. Show that κ(D) = dimφ(S); in particular κ(A) = dim(X) for any ample
divisor A. (Hint: Look at the Hilbert polynomial.)

(3) Deduce that the Iitaka dimension of every divisor is bounded by dim(X).
(4) Let D be a big divisor and F any reduced divisor. Using the machinery introduced

in the beginning of section 2 prove that

h0(X,mD − F ) 6= 0,

for m� 0. Deduce that a big divisor always lies in the interior of the pseudoeffective
cone. (Hint: you will not need any vanishing theorems, just basic linear algebra).

(5) Conversely, assume that D is a divisor lying in the interior of the pseudoeffective
cone. Show that D = A + F for some ample divisor A and an effective divisor F
and therefore κ(D) = dim(X).

https://s-zikas.github.io/site/pics/charp.png
https://s-zikas.github.io/site/pics/charp.png
https://s-zikas.github.io/site/pics/complexGeometer.png


ALGEBRAIC SURFACES & THE SARKISOV PROGRAM. 45

All in all this proves that a divisor is big if and only if it lies in the interior of the pseudo-
effective cone.

Exercise 12 (Proj in action - anti-canonical ring of dP2). Let S → P2 be the blowup of P2

at 7 general points, so that −KS is ample.

(1) Show that

h0(S,−nKS) = n(n+ 1) + 1.

(2) Argue similarly to the last cases of the proof of Proposition 4.2 to show that −KX

is base point free and gives a 2 : 1 surjective morphism to P2.
(3) Let {y0, y1, y2} be a basis of H0(S,−KS). Show that

h0(S,−2KS) = dim
(
k[y0, y1, y2]2

)
+ 1.

Show that y20, y0y1, . . . , y
2
2 are linearly independent in H0(S,−2KS). Deduce that

H0(S,−2KS) = 〈y20, y0y1, . . . , y22, t〉,

for some t ∈ H0(S,−2KS). (Hint: assume that there is a linear relation among the yiyj;

look at the morphism of (2).)

In what follows we will denote by P the graded polynomial ring k[y0, y1, y2, t] with the
grading deg(yi) = 1, deg(t) = 2. Let f ∈ P4 be a homogeneous polynomial of degree 4 and
denote by R the ring P/(f).

(4) Fill in the following table:

n h0(S,−nKS) dim(Pn) dim(Rn)

1

2

3

4

and deduce that there is an equation F (y0, y1, y2, t) of degree 4 among the yi and t.
Accept as a fact (or suffer the calculations) that, up to a change of coordinates, F
takes the form

t2 − f4(y0, y1, y2).
(5) Let T denote the projective variety Proj(R), that is

T = {t2 − f4(y0, y1, y2) = 0} ⊂ P(1, 1, 1, 2).

We then get a commutative diagram

S
##

// T
{{

P2

where S → P2 is the morphism of (2) and T → P2 is the projection to the yi. Show
that T → P2 is a surjective 2 : 1 morphism. Deduce that S → T is a bijective
morphism, and thus an isomorphism. This shows that we have an isomorphism of
graded rings ⊕

n≥0
H0(S,−nKS) ∼= T.



46 ALGEBRAIC SURFACES & THE SARKISOV PROGRAM.

Sidenotes:

• While −KS is ample, it is not very ample; only −2KS is very ample. We have
h0(S,−2KS) = 7 and thus the corresponding morphism gives an embedding of S
into P6, whose image is cut out by many equations. However the image of the
embedding of (5) is just a hypersurface. In general, Proj is a way of neatly packing
information for all multiples of a divisor simultaneously.
• The problem of computing the anti-canonical ring is a difficult one: it is in gen-

eral not enough to just compare the dimensions of homogeneous components of
rings. The Graded Ring Database (GDRB) W gives around 54.000 possible anti-
canonical rings of (mildly singular) Fano 3-folds. Deciding which of those corre-
spond to actual varieties is still very open.
• One can similarly define the ring

R(X,D) :=
⊕
n≥0

H0(X,nD)

for any divisor D. Taking its Proj however is a different question, as there is no
guaranty that this ring is finitely generated. In fact, for a big and nef divisor D,
R(X,D) is finitely generated if and only if D is semiample [Laz04, Theorem 2.3.15].
In that case Proj(R(X,D)) is isomorphic to the image of X under the morphism
given by a large multiple of D.
• The surface S admits the involution ι : t 7→ −t. This gives a birational involution

of P2 via

P2 99K S
ι−→ S −→ P2

which is known as the Geiser involution.
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